MATH 720, Algebra I
Exam 1
Due Fri 30 Sep
Let R be a commutative ring with identity.
Exercise 1. Let $\left\{R_{\lambda}\right\}_{\lambda \in \Lambda}$ be a non-empty set of commutative rings with identity. For each $\mu \in \Lambda$ let $p_{\mu}: \prod_{\lambda \in \Lambda} R_{\lambda} \rightarrow R_{\mu}$ be defined as $p_{\mu}\left(\left(r_{\lambda}\right)\right):=r_{\mu}$.
(a) Prove that for each $\mu \in \Lambda$ the function $p_{\mu}: \prod_{\lambda \in \Lambda} R_{\lambda} \rightarrow R_{\mu}$ is an epimorphism of commutative rings with identity.
(b) Let $\left\{f_{\lambda}: R \rightarrow R_{\lambda}\right\}_{\lambda \in \Lambda}$ be a set of homomorphisms of commutative rings with identity. Prove that there is a unique homomorphism $F: R \rightarrow \prod_{\lambda \in \Lambda} R_{\lambda}$ such that for each $\mu \in \Lambda$ the composition $p_{\mu} \circ F$ is f_{μ}.

Exercise 2. Let I be an ideal of R. Let $R \ltimes I$ be the additive abelian group $R \oplus I$ with the following multiplication: for all $(r, i),\left(r^{\prime}, i^{\prime}\right) \in R \ltimes I$ we set $(r, i)\left(r^{\prime}, i^{\prime}\right):=$ $\left(r r^{\prime}, r i^{\prime}+r^{\prime} i\right)$.
(a) Prove that $R \ltimes I$ is a commutative ring with identity under these operations.
(b) Prove that the map $g: R \rightarrow R \ltimes I$ given by $g(r)=(r, 0)$ is a monomorphism of rings with identity.
(c) Prove that the subset $0 \oplus I \subseteq R \ltimes I$ is an ideal of R such that $(R \ltimes I) /(0 \oplus I) \cong R$.
(d) Prove that $(0 \oplus I)^{2}=0$.
(e) Prove that if I is generated (as an ideal of R) by a set $S \subseteq R$, then $0 \oplus I$ is generated (as an ideal of $R \ltimes I$) by the set $\{(0, s) \in R \ltimes I \mid s \in S\}$.
Definition 1. Let I be an ideal of R. The radical of I is the set

$$
\operatorname{rad}(I)=\left\{x \in R \mid \text { there is an integer } n \geqslant 1 \text { such that } x^{n} \in I\right\}
$$

Exercise 3. Let I and J be ideals of R.
(a) Prove that $\operatorname{rad}(I)$ is an ideal of R such that $I \subseteq \operatorname{rad}(I)=\operatorname{rad}(\operatorname{rad}(I))$.
(b) Prove that if $I \subseteq J$, then $\operatorname{rad}(I) \subseteq \operatorname{rad}(J)$.
(c) Prove that $\operatorname{rad}(I)=R$ if and only if $I=R$.
(d) Prove that if I is finitely generated and $I \subseteq \operatorname{rad}(J)$, then there is an integer $q \geqslant 1$ such that $I^{q} \subseteq J$.
(e) Assume that R is a unique factorization domain, and let u be a unit of R. Let p_{1}, \ldots, p_{n} be primes of R such that for all i, j such that $1 \leqslant i<j \leqslant n$ the elements p_{i} and p_{j} are not associates. Given integers $e_{1}, \ldots, e_{n} \geqslant 1$ prove that $\operatorname{rad}\left(\left(u p_{1}^{e_{1}} \cdots p_{n}^{e_{n}}\right) R\right)=\left(p_{1} \cdots p_{n}\right) R$.
(f) Find an example of a commutative ring R with identity and two ideals I and J such that $\operatorname{rad}(I)=\operatorname{rad}(J)$ but $I \nsubseteq J$ and $J \nsubseteq I$.

