MATH 720, Algebra I Exam 1 Due Fri 30 Sep

Let R be a commutative ring with identity.

Exercise 1. Let $\{R_{\lambda}\}_{\lambda \in \Lambda}$ be a non-empty set of commutative rings with identity. For each $\mu \in \Lambda$ let p_{μ} : $\prod_{\lambda \in \Lambda} R_{\lambda} \to R_{\mu}$ be defined as $p_{\mu}((r_{\lambda})) := r_{\mu}$.

- (a) Prove that for each $\mu \in \Lambda$ the function $p_{\mu} \colon \prod_{\lambda \in \Lambda} R_{\lambda} \to R_{\mu}$ is an epimorphism of commutative rings with identity.
- (b) Let $\{f_{\lambda} : R \to R_{\lambda}\}_{\lambda \in \Lambda}$ be a set of homomorphisms of commutative rings with identity. Prove that there is a unique homomorphism $F : R \to \prod_{\lambda \in \Lambda} R_{\lambda}$ such that for each $\mu \in \Lambda$ the composition $p_{\mu} \circ F$ is f_{μ} .

Exercise 2. Let *I* be an ideal of *R*. Let $R \ltimes I$ be the additive abelian group $R \oplus I$ with the following multiplication: for all $(r, i), (r', i') \in R \ltimes I$ we set (r, i)(r', i') := (rr', ri' + r'i).

- (a) Prove that $R \ltimes I$ is a commutative ring with identity under these operations.
- (b) Prove that the map $g \colon R \to R \ltimes I$ given by g(r) = (r, 0) is a monomorphism of rings with identity.
- (c) Prove that the subset $0 \oplus I \subseteq R \ltimes I$ is an ideal of R such that $(R \ltimes I)/(0 \oplus I) \cong R$.
- (d) Prove that $(0 \oplus I)^2 = 0$.
- (e) Prove that if I is generated (as an ideal of R) by a set $S \subseteq R$, then $0 \oplus I$ is generated (as an ideal of $R \ltimes I$) by the set $\{(0, s) \in R \ltimes I \mid s \in S\}$.

Definition 1. Let I be an ideal of R. The *radical* of I is the set

 $\operatorname{rad}(I) = \{x \in R \mid \text{there is an integer } n \ge 1 \text{ such that } x^n \in I\}.$

Exercise 3. Let I and J be ideals of R.

- (a) Prove that rad(I) is an ideal of R such that $I \subseteq rad(I) = rad(rad(I))$.
- (b) Prove that if $I \subseteq J$, then $rad(I) \subseteq rad(J)$.
- (c) Prove that rad(I) = R if and only if I = R.
- (d) Prove that if I is finitely generated and $I \subseteq \operatorname{rad}(J)$, then there is an integer $q \ge 1$ such that $I^q \subseteq J$.
- (e) Assume that R is a unique factorization domain, and let u be a unit of R. Let p_1, \ldots, p_n be primes of R such that for all i, j such that $1 \leq i < j \leq n$ the elements p_i and p_j are not associates. Given integers $e_1, \ldots, e_n \geq 1$ prove that $\operatorname{rad}((up_1^{e_1} \cdots p_n^{e_n})R) = (p_1 \cdots p_n)R$.
- (f) Find an example of a commutative ring R with identity and two ideals I and J such that rad(I) = rad(J) but $I \not\subseteq J$ and $J \not\subseteq I$.