MATH 720, Algebra I Exam 2 Due Fri 04 Nov

Let R be a commutative ring with identity, and let M be a unital R-module.

- **Exercise 1.** (a) Prove that $\operatorname{Hom}_R(M, M)$ is a ring with identity, where addition is performed point-wise, and multiplication is composition of functions.
- (b) Prove that if M is cyclic, then $\operatorname{Hom}_R(M, M)$ is a commutative ring with identity.
- (c) Prove that the conclusion of part (b) can fail if M is not cyclic.
- (d) Prove that M is a $\operatorname{Hom}_R(M, M)$ -module with scalar multiplication given by $f \cdot m = f(m)$.
- (e) For each $r \in R$, the function $\mu_r \colon M \to M$ given by $\mu_r(m) = rm$ is an *R*-module homomorphism. Prove that the function $\chi \colon R \to \operatorname{Hom}_R(M, M)$ given by $\chi(r) := \mu_r$ is a homomorphism of rings with identity.
- (f) Prove that the *R*-module structure on *M* given by restriction of scalars along χ is the same as the original *R*-module structure on *M*.

Exercise 2. Let $I \subseteq R$ be an ideal, and set

 $\Gamma_I(M) = \bigcup_{n=1}^{\infty} (0:_M I^n)$ = {m \in M | there is an integer n \ge 1 such that am = 0 for all a \in I^n}.

- (a) Prove that $\Gamma_I(M)$ is a submodule of M.
- (b) Prove that, for each homomorphism $f: M \to N$ of unital *R*-modules, the function $\Gamma_I(f): \Gamma_I(M) \to \Gamma_I(N)$ given by $\Gamma_I(f)(m) = f(m)$ is a well-defined *R*-module homomorphism.
- (c) Prove that if $f: M \to N$ is a monomorphism of unital *R*-modules, then $\Gamma_I(f)$ is a monomorphism.
- (d) Prove or give a counterexample: If $f: M \to N$ is a homomorphism of unital R-modules, such that $\Gamma_I(f)$ is a monomorphism, then f is a monomorphism.