MATH 790, FALL 2011, HOMEWORK 1 **DUE FRIDAY 02 SEPTEMBER**

Exercise 1. Let R be a commutative ring. Let $g: N \to N'$ be an R-module homomorphism and let M be an R-module.

- (a) Prove that the map $\delta_N^M \colon N \to \operatorname{Hom}_R(\operatorname{Hom}_R(N, M), M)$ given by $\delta_N^M(n)(\psi) = \psi(n)$ is a well-defined *R*-module homomorphism. To be clear: For each $n \in N$ define $\delta_N^M(n)$: Hom_R $(N, M) \to M$ by the formula $\psi \mapsto \psi(n)$. Prove that $\delta_N^M(n)$ is an *R*-module homomorphism. Next, prove that the map $N \to \operatorname{Hom}_R(\operatorname{Hom}_R(N, M), M)$ given by $n \mapsto \delta_N^M(n)$ is a well-defined *R*-module homomorphism.
- (b) Prove that the following diagram commutes:

Exercise 2. Let R be a commutative ring, and let C be an R-module.

- (a) Prove that the map $\chi_C^R \colon R \to \operatorname{Hom}_R(C,C)$ given by $\chi_C^R(r)(c) = rc$ is a welldefined R-module homomorphism.
- (b) Prove that Ker(χ^R_C) = Ann_R(C).
 (c) Prove that if C is cyclic, then C ≅ R/Ann_R(C).