MATH 790, FALL 2011, HOMEWORK 13 (OPTIONAL) DUE FRIDAY 09 DECEMBER

Definition 1. Let R be a commutative ring. An element $e \in R$ is *idempotent* if $e^2 = e$. (For instance, 0 and 1 are both idempotent.)

Exercise 2. Let R be a commutative local ring. Prove that the only idempotent elements of R are 0 and 1.

Exercise 3. Let R_1, \ldots, R_n be commutative rings. Prove that $\text{Spec}(R_1 \times \cdots \times R_n)$ is the disjoint union of open (and closed) subspaces X_i , where X_i is homeomorphic to $\text{Spec}(R_i)$.

Exercise 4. Let R be a commutative ring. Prove that the following conditions are equivalent.

(i) $\operatorname{Spec}(R)$ is disconnected.

(ii) There are nonzero commutative rings R_1 and R_2 such that $R \cong R_1 \times R_2$.

(iii) R contains an idempotent element $e \neq 0, 1$.

Conclude that if R is local or an integral domain, then Spec(R) is connected.