MATH 790, FALL 2011, HOMEWORK 2 DUE FRIDAY 16 SEPTEMBER **Exercise 1.** Let R be a commutative noetherian ring, and let M be a finitely generated R-module. Prove that M has a free resolution F_{\bullet} such that each F_i is finitely generated. **Exercise 2.** Let R be a commutative noetherian ring, and let M_{\bullet} be an R-complex. Fix an integer i. Prove that if M_i is finitely generated over R, then $H_i(M_{\bullet})$ is finitely generated over R. **Exercise 3.** Let G be a finitely generated \mathbb{Z} -module, and let H be a \mathbb{Z} -module. Prove that $\operatorname{Ext}_{\mathbb{Z}}^{i}(G,H)=0$ for all i>1.