MATH 790, FALL 2011, HOMEWORK 3 DUE FRIDAY 23 SEPTEMBER

Let R be a commutative noetherian ring. This homework set uses the very famous and useful

Lemma 1 (Nakayama's Lemma). Let M be a finitely generated R-module. If $M/\mathfrak{m}M=0$ for each maximal ideal \mathfrak{m} , then M=0.

Exercise 2. Let M and C be finitely generated R-modules such that

$$M \cong \operatorname{Hom}_R(\operatorname{Hom}_R(M,C),C).$$

Use the following steps to prove that the natural biduality map

$$\delta_M^C \colon M \to \operatorname{Hom}_R(\operatorname{Hom}_R(M,C),C)$$

is an isomorphism.

 ${\tt item0}$

(a) Let $f: N \to N'$ be an R-module homomorphism and set $\operatorname{Coker}(f) = N' / \operatorname{Im}(f)$. Prove that f is an epimorphism if and only if $\operatorname{Coker}(f) = 0$.

item1

(b) Let X and Y be finitely generated R-modules. Prove that if $X \oplus Y \cong Y$, then X = 0. [Hint: The modules $X/\mathfrak{m}X$ and $Y/\mathfrak{m}Y$ are finite dimensional vector spaces such that $(X/\mathfrak{m}X) \oplus (Y/\mathfrak{m}Y) \cong (Y/\mathfrak{m}Y)$, so $X/\mathfrak{m}X = 0$. Now apply Nakayama's Lemma. Note that this fails if Y is not finitely generated. Of course, if Y is finitely generated and $X \oplus Y \cong Y$, then X is finitely generated.]

item3

(c) Let N be an R-module. Prove that the composition

$$\operatorname{Hom}_R(\delta_N^C, C) \circ \delta_{\operatorname{Hom}_R(N,C)}^C$$

is the identity $\mathrm{id}_{\mathrm{Hom}_R(N,C)} \colon \mathrm{Hom}_R(N,C) \to \mathrm{Hom}_R(N,C)$.

item4

(d) Let N be an R-module. Conclude from part (c) that the homomorphism

$$\delta^{C}_{\operatorname{Hom}_{R}(N,C)} \colon \operatorname{Hom}_{R}(N,C) \to \operatorname{Hom}_{R}(\operatorname{Hom}_{R}(N,C),C),C)$$

is a split monomorphism, so there is a finitely generated $R\text{-module }X=\mathrm{Coker}(\delta^C_{\mathrm{Hom}_R(N,C)})$ such that

 $\operatorname{Hom}_R(\operatorname{Hom}_R(\operatorname{Hom}_R(N,C),C),C) \cong X \oplus \operatorname{Hom}_R(N,C).$

item5

(e) Set $N = \operatorname{Hom}_R(M, C)$ and use Step (d) to explain the final isomorphism in the next sequence where $X = \operatorname{Coker}(\delta^C_{\operatorname{Hom}_R(N,C)})$:

$$M \cong \operatorname{Hom}_{R}(\operatorname{Hom}_{R}(M, C), C)$$

 $\cong \operatorname{Hom}_R(\operatorname{Hom}_R(\operatorname{Hom}_R(\operatorname{Hom}_R(M,C),C),C),C)$

 $\cong \operatorname{Hom}_R(\operatorname{Hom}_R(\operatorname{Hom}_R(N,C),C),C)$

 $\cong X \oplus \operatorname{Hom}_R(N, C)$

 $=X\oplus M.$

Use Step (b) to conclude that X=0. Use Step (a) to conclude that $\delta^C_{\operatorname{Hom}_R(N,C)}$ is an epimorphism. Use Step (d) to conclude that $\delta^C_{\operatorname{Hom}_R(N,C)}=\delta^C_M$ is an isomorphism.