MATH 790, FALL 2011, HOMEWORK 4 DUE FRIDAY 30 SEPTEMBER

Let R be a commutative noetherian ring. Then $\operatorname{Spec}(R)$ is the set of all prime ideals of R. For each subset $S \subseteq R$, set $V(S) = \{\mathfrak{p} \in \operatorname{Spec}(R) \mid S \subseteq \mathfrak{p}\}$. For each element $f \in R$, set $D(f) = \{\mathfrak{p} \in \operatorname{Spec}(R) \mid f \notin \mathfrak{p}\}$.

Exercise 1. Let $S \subseteq R$ be a subset. Let $\{I_j\}_{j \in J}$ be a set of ideals of R.

(a) Prove that $V(0) = \operatorname{Spec}(R)$ and $V(1) = \emptyset$.

(b) Prove that V(S) = V((S)R).

(c) Prove that if J is finite then $V(\cap_{j\in J}I_j) = \bigcup_{j\in J}V(I_j)$.

(d) Prove that $V(\bigcup_{j\in J}I_j) = V(\sum_{j\in J}I_j) = \bigcap_{j\in J}V(I_j)$.

This shows that the set $\{V(I) \mid I \subseteq R \text{ is an ideal}\} = \{V(S) \mid S \subseteq R \text{ is a subset}\}$ satisfies the axioms to be the set of closed sets in a topology on Spec(R). This topology is the *Zariski topology* named after the famous algebraic geometer Oscar Zariski.

Exercise 2. Let $S \subseteq R$ be a subset. Let $\{I_j\}_{j \in J}$ be a set of ideals of R. (a) Prove that V(I) = V(rad(I)) where

$$\operatorname{rad}(I) = \{ x \in R \mid x^n \in I \text{ for some } n \ge 1 \} = \bigcap_{\mathfrak{p} \in V(I)} \mathfrak{p}$$

is the radical of I.

- (b) Prove that for each $f \in R$, the set D(f) is an open set in the Zariski topology.
- (c) Prove that for every open set $U \subseteq \operatorname{Spec}(R)$, there is a subset $T \subseteq R$ such that $U = \bigcup_{t \in T} D(t)$. In other words, the set $\{D(f) \mid f \in R\}$ forms a basis for the Zariski topology on $\operatorname{Spec}(R)$.

Exercise 3. [Extra Credit]

(a) Prove that if R is noetherian, then every open subset $U \subseteq \operatorname{Spec}(R)$ is compact, i.e., given any open cover $U = \bigcup_{x \in X} U_x$ there is a finite subcover $U = \bigcup_{i=1}^g U_{x_i}$. In particular, $\operatorname{Spec}(R)$ is compact in this case.

[A topological space X is *noetherian* if every open subset is compact. This is equivalent to satisfying ACC on open sets, which is equivalent to satisfying DCC on open sets.]

- (b) Find an example of a non-noetherian ring R such that Spec(R) is finite. In particular, this shows that the converse of part (a) fails in general.
- (c) Let $f: R \to R'$ be a ring homomorphism. Define $\operatorname{Spec}(f): \operatorname{Spec}(R') \to \operatorname{Spec}(R)$ by the formula $\operatorname{Spec}(f)(\mathfrak{p}') := f^{-1}(\mathfrak{p}')$. Prove that $\operatorname{Spec}(f)$ is well-defined and continuous.

[Note that $\operatorname{Spec}(f)$ is usually denoted f^* .]

(d) Prove that Spec(-) is a contravariant functor from the category of commutative rings with identity (with ring homomorphisms) to the category of topological spaces (with continuous maps).