MATH 790, FALL 2011, HOMEWORK 7 DUE FRIDAY 21 OCTOBER

Exercise 1. Let k be a field, and set $R=k[X, Y]$.
(a) Prove that for all $m, n \geqslant 1$, we have

$$
\operatorname{Ass}_{R}\left(R /\left(X^{m}, Y^{n}\right) R\right)=\{(X, Y) R\}=\operatorname{Ass}_{R}\left(R /((X, Y) R)^{n}\right)
$$

[Hint: Feel free to use V.2.11(c) from the homological algebra notes.]
(b) For $M=R /\left(X^{2}, X Y\right) R$, we have

$$
\operatorname{Ass}_{R}\left(R /\left(X^{2}, X Y\right) R\right)=\{(X) R,(X, Y) R\}
$$

[Hint: For one containment, show that there is a filtration of $R /\left(X^{2}, X Y\right) R$ where the quotients M_{i} / M_{i-1} are isomorphic to $R /(X)$ and $R /(X, Y)$.]
(c) Prove or give a counterexample to the following:

$$
\mathrm{ZD}_{R}\left(\operatorname{Hom}_{R}\left(R /\left(X^{2}, X Y\right) R, R /\left(X^{m}, Y^{n}\right) R\right)\right)=(X, Y) R
$$

(d) For $M=R /\left(X^{2}, X Y\right)$, prove that for each integer $n \geqslant 1$, there is a prime filtration of M over R such that the prime ideal (X, Y) occurs exactly n times in the filtration. (In particular, this shows that the number of "links" in a prime filtration is dependent on the choice of prime filtration. Contrast this with the Jordan-Hölder Theorem.)

