MATH 790, FALL 2011, HOMEWORK 8 DUE FRIDAY 28 OCTOBER

Fact 1. Let R be a commutative local ring, and let P be a finitely generated projective R-module. Then P is free over R, say $P \cong R^n$. (We will prove this in class. Note that R satisfies the invariant basis property, so n is the only integer m such that $P \cong R^m$.) The number n is the rank of R, denoted rank_R(P).

Exercise 2. Let R be a commutative ring, and let Q be a finitely generated projective R-module.

- (a) Prove that for each $\mathfrak{p} \in \operatorname{Spec}(R)$, the localization $Q_{\mathfrak{p}}$ is a finitely generated projective $R_{\mathfrak{p}}$ -module, so we have $Q_{\mathfrak{p}} \cong R_{\mathfrak{p}}^{e_{\mathfrak{p}}}$ where $e_{\mathfrak{p}} = \operatorname{rank}_{R_{\mathfrak{p}}}(Q_{\mathfrak{p}})$.
- (b) Prove that for all $\mathfrak{p}, \mathfrak{q} \in \operatorname{Spec}(R)$, if $\mathfrak{q} \subseteq \mathfrak{p}$, then $\operatorname{rank}_{R_{\mathfrak{q}}}(Q_{\mathfrak{q}}) = \operatorname{rank}_{R_{\mathfrak{p}}}(Q_{\mathfrak{p}})$, that is, $e_{\mathfrak{q}} = e_{\mathfrak{p}}$.

Definition 3. Let R be a commutative ring, and let Q be a finitely generated projective R-module. The rank function for Q is the function r_Q : Spec $(R) \to \mathbb{N}$ defined as $r_Q(\mathfrak{p}) := \operatorname{rank}_{R_\mathfrak{p}}(Q_\mathfrak{p})$.

Exercise 4. Let R be a commutative noetherian ring, and let Q be a finitely generated projective R-module. Let C be a semidualizing R-module. Prove that the following conditions are equivalent:

- (i) $Q \otimes_R C$ is a semidualizing *R*-module;
- (ii) $r_Q(\mathfrak{p}) = 1$ for all $\mathfrak{p} \in \operatorname{Spec}(R)$; and
- (iii) $r_Q(\mathfrak{m}) = 1$ for each maximal ideal $\mathfrak{m} \subset R$.

Exercise 5. (bonus) Let R be a commutative noetherian ring, and let Q be a finitely generated projective R-module. For each integer $n \ge 0$ set

$$X_n = \{ \mathfrak{p} \in \operatorname{Spec}(R) \mid r_Q(\mathfrak{p}) = n \}.$$

Let m be a non-negative integer.

- (a) Let $\mathfrak{p} \in \operatorname{Spec}(R)$ such that $r_Q(\mathfrak{p}) = m$. Prove that there is an element $s \in R \setminus \mathfrak{p}$ such that $Q_s \cong R_s^m$.
- (b) Prove that X_m is an open subset of $\operatorname{Spec}(R)$ in the Zariski topology.
- (c) Observe that the complement $\operatorname{Spec}(R) \setminus X_m$ is the union $\bigcup_{n \neq m} X_n$ of open sets, so it is open. Conclude that X_m is a closed subset of $\operatorname{Spec}(R)$ in the Zariski topology.