MATH 720, Algebra I Exercises 10 Due Wed 19 Nov

Throughout this homework set, let R be a ring with identity.

Exercise 1. Let I be a two-sided ideal of R, and let M be a unitary R-module. Let IM be the submodule of M generated by the set $\{im \in M \mid i \in I \text{ and } m \in M\}$.

- (a) Prove that IM = {∑_n^{finite} i_nm_n | i_n ∈ I and m_n ∈ M}.
 (b) Prove that M/IM has a well-defined unitary R/I-module structure given by (r+I)(m+IM) := (rm) + IM.

Exercise 2. A unitary *R*-module *M* is *cyclic* if there is an element $m \in M$ such that $M = \langle m \rangle$. Prove that a unitary *R*-module *M* is cyclic if and only if there is a left ideal $I \subseteq R$ such that $M \cong R/I$.

Exercise 3. A non-zero unitary R-module M is simple if its only submodules are 0 and M.

- (a) Prove that if M is a simple R-module, then M is cyclic.
- (b) Prove or disprove the converse to part (a).
- (c) Let $f: M \to N$ be a homomorphism between simple R-modules. Prove that f is either 0 or an isomorphism.
- (d) Assume that R is commutative. Prove that M is a simple R-module if and only if there is a maximal ideal $\mathfrak{m} \subset R$ such that $M \cong R/\mathfrak{m}$.