MATH 720, Algebra I Exercises 11 Due Wed 26 Nov

Throughout this homework set, let R be a commutative ring with identity. Let L, M, and N be unitary R-modules.

Exercise 1. Let $f: M \to N$ be an R-module isomorphism. Prove that the map $f^*: \operatorname{Hom}_R(N, L) \to \operatorname{Hom}_R(M, L)$ is an isomorphism.

Exercise 2 (The Five Lemma). Consider the following commutative diagram of R-module homomorphisms with exact rows

$$A_{1} \xrightarrow{f_{1}} A_{2} \xrightarrow{f_{2}} A_{3} \xrightarrow{f_{3}} A_{4} \xrightarrow{f_{4}} A_{5}$$

$$\downarrow \alpha_{1} \qquad \downarrow \alpha_{2} \qquad \downarrow \alpha_{3} \qquad \downarrow \alpha_{4} \qquad \downarrow \alpha_{5}$$

$$B_{1} \xrightarrow{g_{1}} B_{2} \xrightarrow{g_{2}} B_{3} \xrightarrow{g_{3}} B_{4} \xrightarrow{g_{4}} B_{5}$$

- (a) Prove that if α_1 is an epimorphism and α_2 , α_4 are monomorphisms, then α_3 is a monomorphism.
- (b) Prove that if α_5 is a monomorphism and α_2 , α_4 are epimorphisms, then α_3 is an epimorphism.

Exercise 3. Consider the following commutative diagram of R-module homomorphisms with exact rows

- (a) Prove that there is an exact sequence $Ker(\alpha_1) \to Ker(\alpha_2) \to Ker(\alpha_3)$.
- (b) Prove that there is an exact sequence $B_1/\operatorname{Im}(\alpha_1) \to B_2/\operatorname{Im}(\alpha_2) \to B_3/\operatorname{Im}(\alpha_3)$.
- (c) (Bonus) Show how this gives another proof of Proposition 3.7.9 from the notes.