MATH 720, Algebra I Exercises 13 Due Fri 12 Dec

Throughout this homework set, let R be a commutative ring with identity.

Exercise 1. Let L, M, and N be unitary R-modules. Let $i: L \to L \oplus M$ be defined as i(x) = (x, 0). Let $j: M \to L \oplus M$ be defined as j(y) = (0, y). Define

$$\Phi \colon \operatorname{Hom}_R(L \oplus M, N) \to \operatorname{Hom}_R(L, N) \oplus \operatorname{Hom}_R(M, N)$$

by the formula $\Phi(f) = (f \circ i, f \circ j)$. Define

$$\Psi \colon \operatorname{Hom}_R(L,N) \oplus \operatorname{Hom}_R(M,N) \to \operatorname{Hom}_R(L \oplus M,N)$$

by the formula $\Psi(g,h) = g \boxplus h$ where $(g \boxplus h)(x,y) = g(x) + h(y)$.

- (a) Prove that Φ is an R-module isomorphism with inverse Ψ .
- (b) (Bonus) Prove that, given an R-module homomorphism $\alpha \colon N \to N'$, there is a commutative diagram

$$\begin{array}{c|c} \operatorname{Hom}_R(L \oplus M, N) & \stackrel{\Phi}{\longrightarrow} \operatorname{Hom}_R(L, N) \oplus \operatorname{Hom}_R(M, N) \\ \\ \operatorname{Hom}_R(L \oplus M, \alpha) \Big| & & & \operatorname{Hom}_R(L, \alpha) \oplus \operatorname{Hom}_R(M, \alpha) \\ \\ \operatorname{Hom}_R(L \oplus M, N') & \stackrel{\Phi'}{\longrightarrow} \operatorname{Hom}_R(L, N') \oplus \operatorname{Hom}_R(M, N') \end{array}$$

(c) (Bonus) Prove that, given a set of R-modules $\{M_i\}_{i\in I}$, one has

$$\operatorname{Hom}_R(\oplus_i M_i, N) \cong \prod_i \operatorname{Hom}_R(M_i, N).$$

Exercise 2. (a) Prove that given two exact sequences of unitary R-module homomorphisms

$$A \xrightarrow{\alpha} B \xrightarrow{\beta} C \to 0 \qquad \qquad 0 \to C \xrightarrow{\gamma} D \xrightarrow{\delta} E$$

the following sequence is also exact:

$$A \xrightarrow{\alpha} B \xrightarrow{\gamma \circ \beta} D \xrightarrow{\delta} E.$$

(b) Prove that given a unitary R-module M, there is an exact sequence

$$\cdots \xrightarrow{\partial_2} F_1 \xrightarrow{\partial_1} F_0 \xrightarrow{\partial_0} M \to 0$$

such that each F_i is a free R-module.

(c) (Bonus) Prove that given a homomorphism of unitary R-modules $f: M \to M'$, there is a homomorphism of exact sequences

$$\begin{array}{c|c}
\cdots \xrightarrow{\partial_2} F_1 \xrightarrow{\partial_1} F_0 \xrightarrow{\partial_0} M \longrightarrow 0 \\
\widetilde{f}_1 \middle\downarrow & \widetilde{f}_0 \middle\downarrow & f \middle\downarrow \\
\vdots & \widetilde{f}_0$$

such that F_i and F'_i are free R-modules for all i.