MATH 720, Algebra I Exercises 3 Due Wed 24 Sep

Throughout this homework set, let R be a non-zero commutative ring with identity.

Exercise 1. Let k be a field, and let $f: k \to R$ be a homomorphism of commutative rings with identity. Prove that f is a monomorphism.

Exercise 2. Let p be a prime number, and assume that R is a \mathbb{Z}_p -algebra. Let $F: R \to R$ be defined by $F(r) = r^p$.

(a) Prove that F is a homomorphism of \mathbb{Z}_p -algebras. (Hint: You may assume that the Binomial Theorem holds in R, that is, for all r, s ∈ R and all n ∈ N, we have (r + s)ⁿ = ∑_{i=0}ⁿ (ⁿ_i)rⁱsⁿ⁻ⁱ.)
(b) Prove that if R is an integral domain, then F is a monomorphism.

The map F is called the "Frobenius endomorphism" of R.

Exercise 3. Consider the polynomial ring R[x].

- (a) Let $f \in R[x]$ be monic. Prove that f is a unit in R[x] if and only if $f = 1_R$.
- (b) Give an example of a non-zero commutative ring R with identity having a non-constant polynomial $f \in R[x]$ that is a unit in R[x]. (In particular, the assumption that f is monic is necessary in part (a).)