MATH 720, Algebra I
Exercises 5
Due Wed 08 Oct

Exercise 1. Let R be an integral domain, and let $a, b, c \in R$ such that $a \neq 0$.
(a) Prove that if $\langle a b\rangle=\langle a c\rangle$, then $\langle b\rangle=\langle c\rangle$.
(b) Prove that if $\langle a\rangle=\langle a b\rangle$, then b is a unit.

Exercise 2. Let R be an integral domain, and consider the polynomial ring $S=$ $R\left[x_{1}, \ldots, x_{n}\right]$. Let $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in R^{n}$, and let $f \in S$. Prove that there are polynomials q_{1}, \ldots, q_{n} such that $q_{i}=q_{i}\left(x_{1}, \ldots, x_{i}\right) \in R\left[x_{1}, \ldots, x_{i}\right]$ for $i=1, \ldots, n$ and $f=\left[\sum_{i} q_{i} \cdot\left(x_{i}-a_{i}\right)\right]+f(\mathbf{a})$. (Hint. Use induction on n.)

Exercise 3. Let R be an integral domain, and consider the polynomial ring $S=$ $R\left[x_{1}, \ldots, x_{n}\right]$. Let $Z \subseteq S$, and set $I=(Z) S$. Let $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in R^{n}$, and consider the ideal $\mathfrak{m}:=\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right) S$. Prove that the following conditions are equivalent.
(i) $I \subseteq \mathfrak{m}$.
(ii) For all $f \in I$, we have $f(\mathbf{a})=0$.
(iii) For all $f \in Z$, we have $f(\mathbf{a})=0$.

Exercise 4. Consider the polynomial ring $\mathbb{R}[x]$ and the ideal $\left\langle x^{2}+1\right\rangle \subseteq \mathbb{R}[x]$.
(i) Prove that there is an isomorphism of \mathbb{R}-algebras $\mathbb{C} \cong \mathbb{R}[x] /\left\langle x^{2}+1\right\rangle$.
(ii) Prove that $\left\langle x^{2}+1\right\rangle$ is a maximal ideal of $\mathbb{R}[x]$.

