MATH 720, Algebra I
Exercises 7
Due Wed 22 Oct

Exercise 1. Let R be a UFD and $0 \neq f=\sum_{i=0}^{d} a_{i} x^{i} \in R[x]$.
(a) Show that $C(t f)=[t] C(f)$ for each $t \in R-\{0\}$.
(b) Show that if $C(f)=[r]$, then there is a primitive polynomial $g \in R[x]$ such that $f=r g$.
Exercise 2. Let R be an integral domain, and $0 \neq a, b \in R$.
(a) Prove that if $d \in R$ such that $\langle a, b\rangle=\langle d\rangle$, then $\operatorname{gcd}(a, b)=[d]$.
(b) Prove that if $m \in R$ such that $\langle a\rangle \bigcap\langle b\rangle=\langle m\rangle$, then $\operatorname{lcm}(a, b)=[m]$.
(c) (Bonus) Prove or disprove the converses of parts (a) and (b). If the converse fails in general, give an additional condition on R that makes each converse hold.

Exercise 3. Let R be an integral domain. Let $c_{0}, c_{1}, \ldots, c_{n}$ be distinct elements of R, and let $d_{0}, \ldots, d_{n} \in R$. Prove that there is at most one polynomial $f \in R[x]$ of degree n such that $f\left(c_{i}\right)=d_{i}$ for $i=0,1, \ldots, n$.

Exercise 4 (Lagrange interpolation). Let k be a field. Let $c_{0}, c_{1}, \ldots, c_{n}$ be distinct elements of k, and let $d_{0}, \ldots, d_{n} \in k$. Prove that

$$
f=\sum_{i=0}^{n} \frac{\left(x-c_{0}\right) \cdots\left(x-c_{i-1}\right)\left(x-c_{i+1}\right) \cdots\left(x-c_{n}\right)}{\left(c_{i}-c_{0}\right) \cdots\left(c_{i}-c_{i-1}\right)\left(c_{i}-c_{i+1}\right) \cdots\left(c_{i}-c_{n}\right)} d_{i}
$$

is the unique polynomial in $k[x]$ of degree n such that $f\left(c_{i}\right)=d_{i}$ for $i=0,1, \ldots, n$.

