MATH 720, Algebra I
Exercises 8
Due Wed 29 Oct

Exercise 1. Let $R=\{a+b \sqrt{10} \mid a, b \in \mathbb{Z}\} \subseteq \mathbb{R}$. Define $N: R \rightarrow \mathbb{Z}$ by the formula $N(a+b \sqrt{10}):=a^{2}-10 b^{2}$. Let $u, v \in R$.
(a) Prove that R is a subring of \mathbb{R} with identity $1_{R}=1_{\mathbb{R}}$. Deduce that R is an integral domain.
(b) Prove that $N(u v)=N(u) N(v)$.
(c) Prove or disprove: N is a ring homomorphism.
(d) Prove that $N(u)=0$ if and only if $u=0$.
(e) Prove that u is a unit in R if and only if $N(u)= \pm 1$.
(f) Prove that $2,3,4+\sqrt{10}, 4-\sqrt{10}$ are irreducible elements of R.
(g) Prove that $2,3,4+\sqrt{10}, 4-\sqrt{10}$ are not associates in R.
(h) Show that $2 \cdot 3=(4+\sqrt{10})(4-\sqrt{10})$.
(i) Prove that $2,3,4+\sqrt{10}, 4-\sqrt{10}$ are not prime elements of R.
(j) Prove that R is not a UFD.
(k) Prove or disprove: R is a Euclidean domain.
(l) Prove that every non-zero nonunit of R factors as a finite product of irreducible elements of R.

