MATH 499/696, SPRING 2010, HOMEWORK 2 DUE FRIDAY 19 FEBRUARY

Item numbers refer to version of course notes dated February 5, 2010
Exercise 1.3.16(b): Verify the equality $\left(X+X Y, Y+X Y, X^{2}, Y^{2}\right) R=(X, Y) R$ of ideals in the polynomial ring $R=\mathbb{Q}[X, Y]$.

Exercise 1.3.18: Let A be a commutative ring with identity. Let $R=A[X, Y]$ and show that the ideal $(X, Y) R$ is not principal.

Exercise 1.4.28: Let A denote a commutative ring with identity, and set $R=$ $A\left[X_{1}, \ldots, X_{d}\right]$ and $(\mathbf{X})=\left(X_{1}, \ldots, X_{d}\right) R$. Show that, if $f \in R$, then $f \in(\mathbf{X})^{n}$ if and only if each monomial occurring in f has degree at least n. Show that this implies that $(\mathbf{X}) \neq R$.

Exercise 1.5.18: Verify the properties in Fact 1.5.11: Let R be a commutative ring with identity, let Let n be a positive integer, and let I and J be ideals of R.
(a) Suppose $I=\left(f_{1}, \ldots, f_{m}\right) R$. Then $\operatorname{rad}(I) \subseteq \operatorname{rad}(J)$ if and only if for each $i=1,2, \ldots, m$ there exists a positive integer n_{i} such that $f_{i}^{n_{i}} \in J$.
(b) Suppose $I=\left(f_{1}, \ldots, f_{s}\right) R$ and $J=\left(g_{1}, \ldots, g_{t}\right) R$. Then $\operatorname{rad}(I)=\operatorname{rad}(J)$ if and only if for each $i=1,2, \ldots, s$ there exists a positive integer n_{i} such that $f_{i}^{n_{i}} \in J$, and for each $j=1,2, \ldots, t$ there exists a positive integer m_{j} such that $g_{j}^{m_{j}} \in I$.
(c) Suppose $I \subseteq J$ and that $J=\left(g_{1}, \ldots, g_{t}\right) R$. Then $\operatorname{rad}(I)=\operatorname{rad}(J)$ if and only if for each $j=1,2, \ldots, t$ there exists an integer m_{j} such that $g_{j}^{m_{j}} \in I$.

Exercise 1.5.20: [Math 696 only] Let A be a commutative ring with identity. Consider the polynomial ring $R=A\left[X_{1}, \ldots, X_{d}\right]$ and the ideal $(\mathbf{X})=\left(X_{1}, \ldots, X_{d}\right) R$.
(a) Prove that $\left((\mathbf{X})^{n}:(\mathbf{X})\right)=(\mathbf{X})^{n-1}$.
(b) List the monomials in $(\mathbf{X})^{n} \backslash(\mathbf{X})^{n-1}$.

