MATH 499/696, SPRING 2010, HOMEWORK 3 DUE FRIDAY 05 MARCH

Item numbers refer to version of course notes dated February 5, 2010

Exercise 2.1.19: Let A be a commutative ring with identity and let R be the polynomial ring $R=A\left[X_{1}, \ldots, X_{d}\right]$ in d variables. Set $(\mathbf{X})=\left(X_{1}, \ldots, X_{d}\right) R$ and let I be a monomial ideal. Prove that $I \neq R$ if and only if $I \subseteq(\mathbf{X})$.

Exercise 2.1.20: Let A be a commutative ring with identity and let R be the polynomial ring $R=A\left[X_{1}, \ldots, X_{d}\right]$ in d variables. Set $(\mathbf{X})=\left(X_{1}, \ldots, X_{d}\right) R$. Prove that, if I is a monomial ideal such that $I \neq R$, then $\operatorname{rad}(I)=\operatorname{rad}((\mathbf{X}))$ if and only if for each $i=1, \ldots, d$ there exists an integer $n_{i}>0$ such that $X_{i}^{n_{i}} \in I$.

Exercise 2.3.19: Let A be a commutative ring with identity and let R be the polynomial ring $R=A\left[X_{1}, \ldots, X_{d}\right]$ in d variables. Let I_{1}, \ldots, I_{n} be monomial ideals in R and set $(\mathbf{X})=\left(X_{1}, \ldots, X_{d}\right) R$.
(a) Prove that the product $I_{1} \cdots I_{n}$ is a monomial ideal.
(b) Prove that, if $\operatorname{rad}\left(I_{j}\right)=\operatorname{rad}((\mathbf{X}))$ for $j=1, \ldots, n$, then $\operatorname{rad}\left(I_{1} \cdots I_{n}\right)=$ $\operatorname{rad}((\mathbf{X}))$.
(c) Prove that if $I_{j} \neq R$ for $j=1, \ldots, n$ and $\operatorname{rad}\left(I_{1} \cdots I_{n}\right)=\operatorname{rad}((\mathbf{X}))$, then $\operatorname{rad}\left(I_{j}\right)=\operatorname{rad}((\mathbf{X}))$ for $j=1, \ldots, n$.
(d) Prove that $\left[I_{1} \cdots I_{n}\right]=\left\{z_{1} \cdots z_{n} \mid z_{1} \in\left[I_{1}\right], \ldots, z_{n} \in\left[I_{n}\right]\right\}$.

Exercise 2.3.20: Let A be a commutative ring with identity and let R be the polynomial ring $R=A\left[X_{1}, \ldots, X_{d}\right]$ in d variables. Let I_{1}, \ldots, I_{n} be monomial ideals in R and set $(\mathbf{X})=\left(X_{1}, \ldots, X_{d}\right) R$.
(a) Prove that the sum $I_{1}+\cdots+I_{n}$ is a monomial ideal.
(b) Prove that, if $\operatorname{rad}\left(I_{j}\right)=\operatorname{rad}((\mathbf{X}))$ for $j=1, \ldots, n$, then $\operatorname{rad}\left(I_{1}+\cdots+I_{n}\right)=$ $\operatorname{rad}((\mathbf{X}))$.
(c) Prove or give a counter-example for the following: if $\operatorname{rad}\left(I_{1}+\cdots+I_{n}\right)=$ $\operatorname{rad}((\mathbf{X}))$, then $\operatorname{rad}\left(I_{j}\right)=\operatorname{rad}((\mathbf{X}))$ for $j=1, \ldots, n$.
(d) Prove that $\Gamma\left(I_{1}+\cdots+I_{n}\right)=\Gamma\left(I_{1}\right) \cup \cdots \cup \Gamma\left(I_{n}\right)$.
(e) Prove that $\left[I_{1}+\cdots+I_{n}\right]=\left[I_{1}\right] \cup \cdots \cup\left[I_{n}\right]$.

Exercise 2.1.29: [Math 696 only] Let A be a commutative ring with identity and let R be the polynomial $\operatorname{ring} R=A\left[X_{1}, \ldots, X_{d}\right]$ in d variables. Let $(\mathbf{X})=$ $\left(X_{1}, \ldots, X_{d}\right) R$. Let I be a monomial ideal in R, and let S denote the set of monomials in $R \backslash I$. Prove that S is a finite set if and only if $\operatorname{rad}(I) \supseteq \operatorname{rad}((\mathbf{X}))$.

