MATH 499/696, SPRING 2010, HOMEWORK 4 DUE FRIDAY 26 MARCH

Item numbers refer to version of course notes dated March 2, 2010

Exercise 2.3.22: Let A be a commutative ring with identity and let R be the polynomial ring $R=A\left[X_{1}, \ldots, X_{5}\right]$ in 5 variables. Find the irredundant monomial generating sequence and compute $\nu_{R}(I)$ for the monomial ideal

$$
I=\left(X_{1} X_{2}^{2} X_{3}^{3}, X_{1} X_{3}, X_{2} X_{4}, X_{1}^{3} X_{2}^{2} X_{4} X_{5}\right) R
$$

Exercise 2.3.24: Let A be a commutative ring with identity and let R be the polynomial ring $R=A\left[X_{1}, \ldots, X_{d}\right]$ in d variables. Let I be a monomial ideal of R. Prove that $\operatorname{rad}(I)=\operatorname{rad}((\mathbf{X}))$ if and only if the irredundant monomial generating sequence for I contains a power of each variable.

Exercise 3.1.13: Let A be a commutative ring with identity and let R be the polynomial ring $R=A\left[X_{1}, \ldots, X_{d}\right]$ in d variables. Suppose I is generated by the set of monomials S and J is generated by the set of monomials T. Prove or disprove the following: The ideal $I \cap J$ is generated by the set of monomials $L=\{\operatorname{lcm}(f, g) \mid f \in S$ and $g \in T\}$.

Exercise 3.3.17: Let A be a commutative ring with identity and let R be the polynomial ring $R=A[X, Y]$ in two variables. In this exercise you are asked to work through the proof of Theorem 3.3.10 with $I=(X, Y) R$ and $J=\left(X^{3}, X^{2} Y^{2}, Y^{4}\right) R$.
(a) Prove that the hypotheses of Theorem 3.3 .10 are satisfied for this ideal J.
(b) Start with $z_{1}=X^{3}$ and follow the proof to find an element $w_{2} \in\left(J:_{R} I\right) \backslash J$. Graph z_{1}, w_{2}, and J on the same set of coordinate axes.

Exercise 2.3.21: [Math 696 only] Let A be a commutative ring with identity and let R be the polynomial ring $R=A\left[X_{1}, \ldots, X_{d}\right]$ in d variables.
(a) Let I_{1}, \ldots, I_{k}, and J be monomial ideals in R. Prove that $\left(I_{1}+\cdots+I_{k}\right) \cap J=$ $\left(I_{1} \cap J\right)+\cdots+\left(I_{k} \cap J\right)$.
(b) Give an example (where $d=2$) to show that this is not true without the assumption that each of the ideals I_{1}, I_{2}, and J are monomial ideals.

