MATH 499/696, SPRING 2010, HOMEWORK 5 DUE FRIDAY 09 APRIL

Item numbers refer to version of course notes dated March 29, 2010

Exercise 3.5.26: Let A be a commutative ring with identity, and let R be the polynomial ring $R = A[X_1, \ldots, X_d]$ in d variables. Let I and J be monomial ideals in R.

(a) Prove that m-rad $(I) \subseteq$ m-rad (J) if and only if rad $(I) \subseteq$ rad(J).

(b) Prove that m-rad (I) = m-rad (J) if and only if rad(I) = rad(J).

Exercise 3.5.27: Let A be a commutative ring with identity and let R be the polynomial ring $R = A[X_1, \ldots, X_d]$ in d variables. Set $(\mathbf{X}) = (X_1, \ldots, X_d)R$. Prove that, if I is a monomial ideal, then m-rad $(I) = (\mathbf{X})$ if and only if $rad(I) = rad((\mathbf{X}))$.

Exercise 3.5.32: Let A be a commutative ring with identity and let R be the polynomial ring $R = A[X_1, \ldots, X_d]$ in d variables. Let I_1, \ldots, I_n be monomial ideals in R and set $(\mathbf{X}) = (X_1, \ldots, X_d)R$.

- (a) Prove that, if m-rad $(I_j) = (\mathbf{X})$ for j = 1, ..., n, then m-rad $(I_1 \cdots I_n) = (\mathbf{X})$.
- (b) Prove that if $I_j \neq R$ for j = 1, ..., n and m-rad $(I_1 \cdots I_n) = (\mathbf{X})$, then m-rad $(I_j) = (\mathbf{X})$ for j = 1, ..., n.

Exercise 3.5.36: Let A be a commutative ring with identity and let R be the polynomial ring $R = A[X_1, \ldots, X_d]$ in d variables. Set $(\mathbf{X}) = (X_1, \ldots, X_d)R$, and let I and J be monomial ideals of R. Prove that if $I \subseteq (\mathbf{X})$ and m-rad $(J) = (\mathbf{X})$, then $(J :_R I) \supseteq J$.

Exercise 3.5.31: [Math 696 only] Let A be a commutative ring with identity and let R be the polynomial ring $R = A[X_1, \ldots, X_d]$ in d variables. Let $(\mathbf{X}) = (X_1, \ldots, X_d)R$. Let I be a monomial ideal in R, and let S denote the set of monomials in $R \setminus I$. Prove that S is a finite set if and only if m-rad $(I) \supseteq (\mathbf{X})$.