MATH 499/696, SPRING 2010, HOMEWORK 6 DUE FRIDAY 23 APRIL

Item numbers refer to version of course notes dated 08 April 2010

Exercises 4.1.13 and 4.1.11(a): Let A be a commutative ring with identity and let R be the polynomial ring $R=A\left[X_{1}, \ldots, X_{d}\right]$ in d variables. Let J be a non-zero m-irreducible monomial ideal in R. Prove that there are positive integers n, t_{1}, \ldots, t_{n} such that $\mathrm{m}-\operatorname{rad}(J)=\left(X_{t_{1}}, \ldots, X_{t_{n}}\right) R$. Prove that $\mathrm{m}-\mathrm{rad}(J)$ is m irreducible.

Exercise 3.5.27: Let A be a commutative ring with identity and let R be the polynomial ring $R=A\left[X_{1}, \ldots, X_{d}\right]$ in d variables. Let J be a monomial ideal in R such that $J \neq R$. Prove that the following conditions are equivalent:
(i) J is m-irreducible;
(ii) for all monomial ideal J_{1}, J_{2} if $J_{1} \cap J_{2} \subseteq J$, then either $J_{1} \subseteq J$ or $J_{2} \subseteq J$; and
(iii) for all monomials $f, g \in[R]$ if $\operatorname{lcm}(f, g) \in J$, then either $f \in J$ or $g \in J$.

Exercise 4.3.12(a): Let A be a commutative ring with identity and let R be the polynomial ring $R=A\left[X_{1}, \ldots, X_{d}\right]$ in d variables. Let J be a monomial ideal in R with irredundant m-irreducible decomposition $J=\cap_{i=1}^{n} J_{i}$. Assume that for $i=1, \ldots, n$ the ideal J_{i} is square-free. Prove that J is square-free.

Exercise 4.5.9: Let A be a commutative ring with identity and let R be the polynomial ring $R=A[X, Y]$ in 2 variables. Find an irredundant m-irreducible decomposition of the ideal $J^{[3]}$ where $J=\left(X^{3}, X^{2} Y, Y^{3}\right) R$. Justify your answer.

Exercise 4.1.11(b): [Math 696 or Extra Credit] Let A be a commutative ring with identity and let R be the polynomial ring $R=A\left[X_{1}, \ldots, X_{d}\right]$ in d variables. Let J be a non-zero monomial ideal in R. Prove or disprove the following: if $\mathrm{m}-\operatorname{rad}(J)$ is m -irreducible, then J is m -irreducible.

Exercise 4.1.14: [Math 696 or Extra Credit] Let A be a commutative ring with identity and let R be the polynomial ring $R=A\left[X_{1}, \ldots, X_{d}\right]$ in d variables. Let J be a non-zero m-irreducible monomial ideal in R. Prove or disprove the following: If $\left\{I_{\lambda}\right\}_{\lambda \in \Lambda}$ is a (possibly infinite) set of monomial ideals in R such that $J=\cap_{\lambda \in \Lambda} I_{\lambda}$, then there is an index $\lambda \in \Lambda$ such that $J=I_{\lambda}$.

Exercise 4.3.12(b): [Math 696 or Extra Credit] Let A be a commutative ring with identity and let R be the polynomial ring $R=A\left[X_{1}, \ldots, X_{d}\right]$ in d variables. Let J be a monomial ideal in R with irredundant m-irreducible decomposition $J=\cap_{i=1}^{n} J_{i}$. Prove or disprove the following: If J is square-free, then each ideal J_{i} is square-free.

