MATH 724, SPRING 2012, HOMEWORK 4 **DUE WEDNESDAY 21 MARCH**

Exercise 1. Find the irreducible components for the following algebraic sets.

- $\begin{array}{ll} \text{(a)} & V(X+Y^2) \subseteq \mathbb{A}^2_{\mathbb{C}}.\\ \text{(b)} & V(X^2+Y^2) \subseteq \mathbb{A}^2_{\mathbb{C}}.\\ \text{(c)} & V(XY,XZ) \subseteq \mathbb{A}^3_{\mathbb{C}}. \end{array}$

Justify your answers.

Exercise 2. Let $R = k[X_0, \ldots, X_n]$. For each $d \in \mathbb{Z}$, set

 $k(R)_d = \{ f/g \in k(X_0, \dots, X_n) \mid f \in R_i \text{ and } 0 \neq g \in R_{i-d} \text{ for some } i \ge d \}.$

For each nonzero element $h \in R_j$ and each $d \in \mathbb{Z}$, set

$$(R_h)_d = \{ f/h^m \in k(X_0, \dots, X_n) \mid f \in R_{d+mj} \text{ and } m \ge 0 \}.$$

- (a) Show that $k(R)_0 \subseteq \bigoplus_{d \in \mathbb{Z}} k(R)_d \subseteq k(X_0, \ldots, X_n)$ are subrings and that $k(R)_0 \subseteq \mathbb{Z}$ $k(X_0,\ldots,X_d)$ is a subfield.
- (b) Show that $(R_h)_0 \subseteq \bigoplus_{d \in \mathbb{Z}} (R_h)_d \subseteq k(X_0, \dots, X_n)$ are subrings.
- (c) Show that there is a field isomorphism $k(R)_0 \cong k(Y_1, \ldots, Y_n)$ where Y_1, \ldots, Y_n is a sequence of indeterminates.