MATH 724, SPRING 2012, HOMEWORK 1 DUE FRIDAY 27 JAN

Let R be a commutative ring with identity.
Exercise 1. Let $\left\{f_{i}: M_{i} \rightarrow N_{i}\right\}_{i \in I}$ be a set of R-module homomorphisms.
(a) Prove that there are well-defined R-module homomorphisms

$$
\prod_{i \in I} f_{i}: \prod_{i \in I} M_{i} \rightarrow \prod_{i \in I} N_{i} \quad \text { and } \quad \coprod_{i \in I} f_{i}: \coprod_{i \in I} M_{i} \rightarrow \coprod_{i \in I} N_{i}
$$

given in each case by the rule $\left(m_{i}\right)_{i} \mapsto\left(f_{i}\left(m_{i}\right)\right)_{i}$.
(b) Prove that $\operatorname{Ker}\left(\prod_{i \in I} f_{i}\right)=\prod_{i \in I} \operatorname{Ker}\left(f_{i}\right)$ and $\operatorname{Ker}\left(\coprod_{i \in I} f_{i}\right)=\coprod_{i \in I} \operatorname{Ker}\left(f_{i}\right)$.
(c) Prove that $\operatorname{Im}\left(\prod_{i \in I} f_{i}\right)=\prod_{i \in I} \operatorname{Im}\left(f_{i}\right)$ and $\operatorname{Im}\left(\coprod_{i \in I} f_{i}\right)=\coprod_{i \in I} \operatorname{Im}\left(f_{i}\right)$.
(d) Prove that $\operatorname{Coker}\left(\prod_{i \in I} f_{i}\right) \cong \prod_{i \in I} \operatorname{Coker}\left(f_{i}\right)$ and $\operatorname{Coker}\left(\coprod_{i \in I} f_{i}\right) \cong \coprod_{i \in I} \operatorname{Coker}\left(f_{i}\right)$.
(e) Given another set $\left\{g_{i}: N_{i} \rightarrow P_{i}\right\}_{i \in I}$ of R-module homomorphisms, prove that the following conditions are equivalent:
(i) The sequence $\prod_{i \in I} M_{i} \xrightarrow{\prod_{i \in I} f_{i}} \prod_{i \in I} N_{i} \xrightarrow{\prod_{i \in I} g_{i}} \prod_{i \in I} P_{i}$ is exact.
(ii) The sequence $\coprod_{i \in I} M_{i} \xrightarrow{\coprod_{i \in I} f_{i}} \coprod_{i \in I} N_{i} \xrightarrow{\coprod_{i \in I} g_{i}} \coprod_{i \in I} P_{i}$ is exact.
(iii) For each $i \in I$, the sequence $M_{i} \xrightarrow{f_{i}} N_{i} \xrightarrow{g_{i}} P_{i}$ is exact.

Exercise 2. Let M be an R-module, and prove that the following conditions are equivalent:
(i) $M=0$.
(ii) For each multiplicatively closed subset $U \subseteq R$, one has $U^{-1} M=0$.
(iii) For each prime ideal $\mathfrak{p} \subset R$, one has $M_{\mathfrak{p}}=0$.
(iv) For each maximal ideal $\mathfrak{m} \subset R$, one has $M_{\mathfrak{m}}=0$.

