MATH 724, SPRING 2012, HOMEWORK 1 DUE FRIDAY 27 JAN

Let R be a commutative ring with identity.

Exercise 1. Let $\{f_i \colon M_i \to N_i\}_{i \in I}$ be a set of *R*-module homomorphisms. (a) Prove that there are well-defined *R*-module homomorphisms

$$\prod_{i \in I} f_i \colon \prod_{i \in I} M_i \to \prod_{i \in I} N_i \quad \text{and} \quad \prod_{i \in I} f_i \colon \prod_{i \in I} M_i \to \prod_{i \in I} N_i$$

given in each case by the rule $(m_i)_i \mapsto (f_i(m_i))_i$.

- (b) Prove that $\operatorname{Ker}(\prod_{i \in I} f_i) = \prod_{i \in I} \operatorname{Ker}(f_i)$ and $\operatorname{Ker}(\coprod_{i \in I} f_i) = \coprod_{i \in I} \operatorname{Ker}(f_i)$. (c) Prove that $\operatorname{Im}(\prod_{i \in I} f_i) = \prod_{i \in I} \operatorname{Im}(f_i)$ and $\operatorname{Im}(\coprod_{i \in I} f_i) = \coprod_{i \in I} \operatorname{Im}(f_i)$. (d) Prove that $\operatorname{Coker}(\prod_{i \in I} f_i) \cong \prod_{i \in I} \operatorname{Coker}(f_i)$ and $\operatorname{Coker}(\coprod_{i \in I} f_i) \cong \coprod_{i \in I} \operatorname{Coker}(f_i)$. (e) Given another set $\{g_i \colon N_i \to P_i\}_{i \in I}$ of *R*-module homomorphisms, prove that the following conditions are equivalent:
 - (i) The sequence $\prod_{i \in I} M_i \xrightarrow{\Pi_{i \in I} f_i} \prod_{i \in I} N_i \xrightarrow{\Pi_{i \in I} g_i} \prod_{i \in I} P_i$ is exact. (ii) The sequence $\coprod_{i \in I} M_i \xrightarrow{\coprod_{i \in I} f_i} \coprod_{i \in I} N_i \xrightarrow{\coprod_{i \in I} g_i} \coprod_{i \in I} P_i$ is exact.

 - (iii) For each $i \in I$, the sequence $M_i \xrightarrow{f_i} N_i \xrightarrow{g_i} P_i$ is exact.

Exercise 2. Let M be an R-module, and prove that the following conditions are equivalent:

- (i) M = 0.
- (ii) For each multiplicatively closed subset $U \subseteq R$, one has $U^{-1}M = 0$.
- (iii) For each prime ideal $\mathfrak{p} \subset R$, one has $M_{\mathfrak{p}} = 0$.
- (iv) For each maximal ideal $\mathfrak{m} \subset R$, one has $M_{\mathfrak{m}} = 0$.