MATH 726, SPRING 2012, HOMEWORK 11 **DUE FRIDAY 20 APRIL**

Let R be a commutative ring with identity.

Exercise 1. Let M be an R-module, and let $g: N \to N'$ be an R-module isomorphism. Prove that $\operatorname{Ext}_{R}^{i}(M,g)$ and $\operatorname{Ext}_{R}^{i}(g,M)$ are isomorphisms. (The same is true for $\operatorname{Tor}_{i}^{R}(M,g)$ and $\operatorname{Tor}_{i}^{R}(g,M)$, but you do not need to prove it.)

Exercise 2. Let M and N be R-modules.

- (a) Let r ∈ R. Prove that if rM = 0 or rN = 0, then r Extⁱ_R(M, N) = 0 for all i.
 (b) Prove that Ann_R(M) ∪ Ann_R(N) ⊆ Ann_R(Extⁱ_R(M, N)) for all i, and conclude that Ann_R(M) + Ann_R(N) ⊆ ∩[∞]_{i=0} Ann_R(Extⁱ_R(M, N))

(The same is true for $\operatorname{Tor}_{i}^{R}(M, N)$, but you do not need to prove it.)