MATH 724, SPRING 2012, HOMEWORK 2 DUE FRIDAY 03 FEBRUARY

Exercise 1. Let R be a commutative ring with identity, and let $U \subseteq R$ be a multiplicatively closed subset. Let M be an R-module, and let $h: N \rightarrow N^{\prime}$ be an R-module homomorphism. Prove that the following diagram commutes:

$$
\begin{gathered}
U^{-1} \operatorname{Hom}_{R}(M, N) \xrightarrow{\Theta_{U, M, N}} \operatorname{Hom}_{U^{-1} R}\left(U^{-1} M, U^{-1} N\right) \\
U^{-1} \operatorname{Hom}_{R}(M, h) \downarrow \\
\downarrow \\
U^{-1} \operatorname{Hom}_{R}\left(M, N^{\prime}\right) \xrightarrow{\Theta_{U, M, N^{\prime}}} \operatorname{Hom}_{U^{-1} R}\left(U^{-1} M, U^{-1} N^{\prime}\right) .
\end{gathered}
$$

Exercise 2. Let R be a commutative ring with identity, and let $U \subseteq R$ be a multiplicatively closed subset. Let M, M^{\prime}, and N be R-modules, and prove that the following diagram commutes.

Here, the unlabeled vertical isomorphisms are (induced by) the natural ones from Exercises I.3.3(c) and I.4.24 in the notes. (Another version of the diagram is on the next page.)

