MATH 726, SPRING 2012, HOMEWORK 7 DUE FRIDAY 09 MARCH

Let R be a commutative ring with identity. The Exercise below provides an example (due to Hyman Bass) of a non-projective \mathbb{Z}-modules M such that $M_{\mathfrak{m}}$ is projective for all maximal ideals $\mathfrak{m} \subset \mathbb{Z}$. The item marked * will be proved in class.

Exercise 1. Let $M \subseteq \mathbb{Q}$ be the \mathbb{Z}-submodule generated by the set $\{1 / p \mid p$ is prime $\}$.
(a) Prove that $M=\{m / n \in \mathbb{Q} \mid n$ is either 1 or a product of distinct primes $\}$.
(b) Prove that M is not cyclic.
(c) Prove that for each maximal ideal $\mathfrak{m}=q \mathbb{Z} \subset \mathbb{Z}$, the localization $M_{\mathfrak{m}}$ is generated over $\mathbb{Z}_{\mathfrak{m}}$ by $1 / q$.
(d) Prove that for each maximal ideal $\mathfrak{m}=q \mathbb{Z} \subset \mathbb{Z}$, there is a $\mathbb{Z}_{\mathfrak{m}}$-module isomorphism $M_{\mathfrak{m}} \cong \mathbb{Z}_{\mathfrak{m}}$.
(e) Prove that any subset $S \subseteq M$ with at least two elements must be linear dependent over \mathbb{Z}.
(f) Prove that M is not free as a \mathbb{Z}-module.
(g) * Every projective \mathbb{Z}-module is free.
(h) Prove that M is not projective as a \mathbb{Z}-module.

