MATH 726, SPRING 2012, HOMEWORK 7 DUE FRIDAY 09 MARCH

Let R be a commutative ring with identity. The Exercise below provides an example (due to Hyman Bass) of a non-projective \mathbb{Z} -modules M such that $M_{\mathfrak{m}}$ is projective for all maximal ideals $\mathfrak{m} \subset \mathbb{Z}$. The item marked * will be proved in class.

Exercise 1. Let $M \subseteq \mathbb{Q}$ be the \mathbb{Z} -submodule generated by the set $\{1/p \mid p \text{ is prime}\}$.

- (a) Prove that $M = \{m/n \in \mathbb{Q} \mid n \text{ is either 1 or a product of distinct primes}\}.$
- (b) Prove that M is not cyclic.
- (c) Prove that for each maximal ideal $\mathfrak{m} = q\mathbb{Z} \subset \mathbb{Z}$, the localization $M_{\mathfrak{m}}$ is generated over $\mathbb{Z}_{\mathfrak{m}}$ by 1/q.
- (d) Prove that for each maximal ideal $\mathfrak{m} = q\mathbb{Z} \subset \mathbb{Z}$, there is a $\mathbb{Z}_{\mathfrak{m}}$ -module isomorphism $M_{\mathfrak{m}} \cong \mathbb{Z}_{\mathfrak{m}}$.
- (e) Prove that any subset $S \subseteq M$ with at least two elements must be linear dependent over \mathbb{Z} .
- (f) Prove that M is not free as a \mathbb{Z} -module.
- (g) * Every projective \mathbb{Z} -module is free.
- (h) Prove that M is not projective as a \mathbb{Z} -module.