MATH 726, SPRING 2012, HOMEWORK 8 DUE FRIDAY 23 MARCH

Exercise 1. Let R be a commutative ring. Let F be a flat R-module, and let $\phi: A \to B$ and $\psi: B \to C$ be R-module homomorphisms.

- (a) Prove that there are *R*-module isomorphisms $F \otimes_R \operatorname{Im}(\phi) \cong \operatorname{Im}(F \otimes_R \phi)$ and $(F \otimes_R B) / \operatorname{Im}(F \otimes_R \phi) \cong F \otimes_R (B / \operatorname{Im}(\phi)).$
- (b) Prove that there are *R*-module isomorphisms $F \otimes_R \operatorname{Ker}(\psi) \cong \operatorname{Ker}(F \otimes_R \psi)$ and $(F \otimes_R B) / \operatorname{Ker}(F \otimes_R \psi) \cong F \otimes_R (B / \operatorname{Ker}(\psi)).$
- (c) Assume that $\psi \phi = 0$, and prove that $F \otimes_R \operatorname{Im}(\phi)$ is naturally isomorphic to a submodule of $F \otimes_R \operatorname{Ker}(\psi)$ in such a way that $(F \otimes_R \operatorname{Ker}(\psi))/(F \otimes_R \operatorname{Im}(\phi)) \cong F \otimes_R (\operatorname{Ker}(\psi)/\operatorname{Im}(\phi)).$

Exercise 2. Let R be a commutative ring, and let $\{M_{\lambda}\}_{\lambda \in \Lambda}$ be a set of R-modules.

- (a) Prove that if each module M_{λ} is flat and some M_{μ} is faithfully flat, then the coproduct $\coprod_{\lambda} M_{\lambda}$ is faithfully flat.
- (b) Does the converse of part (a) hold? Justify your answer.
- (c) Assume that R is noetherian. State and prove the versions of parts (a) and (b) for the product $\prod_{\lambda} M_{\lambda}$.
- (d) Assume that R is noetherian, and let I be a set. Prove that R^{I} is faithfully flat over R.