MATH 726, SPRING 2012, HOMEWORKS 9-10 **DUE FRIDAY 13 APRIL**

Exercise 1. Let R be a commutative ring, and let $\{M^{\lambda}\}_{\lambda \in \Lambda}$ be a set of R-modules. For each $\lambda \in \Lambda$, let P^{λ}_{\bullet} be a projective resolution of M^{λ} , and let I^{λ}_{\bullet} be an injective resolution of M^{λ} .

- (a) Prove that $\coprod_{\lambda \in \Lambda} P^{\lambda}_{\bullet}$ is a projective resolution of $\coprod_{\lambda \in \Lambda} M^{\lambda}$. (b) Prove that if each P^{λ}_{\bullet} be a free resolution of M^{λ} , then $\coprod_{\lambda \in \Lambda} P^{\lambda}_{\bullet}$ is a free resolution of $\coprod_{\lambda \in \Lambda} M^{\lambda}$.
- (c) Prove that $\prod_{\lambda \in \Lambda} I_{\bullet}^{\lambda}$ is an injective resolution of $\prod_{\lambda \in \Lambda} M^{\lambda}$.
- (d) Prove that if R is noetherian, then $\coprod_{\lambda \in \Lambda} I^{\lambda}_{\bullet}$ is an injective resolution of the coproduct $\coprod_{\lambda \in \Lambda} M^{\lambda}$.

Exercise 2. Let R be a commutative ring, let N be an R-module, and let $\{M^{\lambda}\}_{\lambda \in \Lambda}$ be a set of R-modules.

- (a) Prove that $\operatorname{Ext}_{R}^{i}(N, \prod_{\lambda \in \Lambda} M^{\lambda}) \cong \prod_{\lambda \in \Lambda} \operatorname{Ext}_{R}^{i}(N, M^{\lambda})$ for each *i*. (b) Prove that $\operatorname{Ext}_{R}^{i}(\coprod_{\lambda \in \Lambda} M^{\lambda}, N) \cong \prod_{\lambda \in \Lambda} \operatorname{Ext}_{R}^{i}(M^{\lambda}, N)$ for each *i*. (c) Prove that if *R* is noetherian and *N* is finitely generated, then there is an isomorphism $\operatorname{Ext}_{R}^{i}(N, \coprod_{\lambda \in \Lambda} M^{\lambda}) \cong \coprod_{\lambda \in \Lambda} \operatorname{Ext}_{R}^{i}(N, M^{\lambda})$ for each *i*.