
KOSZUL COMPLEXES

Let R be a commutative noetherian ring with identity. Although not all work
included herein requires R to be noetherian, it simplifies matters quite a bit. This
compilation covers the equivalent definitions of the Koszul complex, showing that
the Koszul complex is independent of its generating sequence, showing that the
Koszul complex is self-dual, depth sensitivity, and the differential graded algebra
structure on the Koszul complex.

Additional and supporting information about Koszul complexes can be found
in several texts: Bruns and Herzog [2, Section 1.6], Sather-Wagstaff’s Homological
Algebra Notes [8, Section VI] (these notes can be found online at Sather-Wagstaff’s
website), Matsumura [5, Section 6], Foxby [4] (these notes are unpublished, see
Sather-Wagstaff for information), and Eisenbud [3, Chapter 17].

1. Day 1

In this section we begin by setting notation and defining the Koszul complex.
There are three different ways of defining the Koszul complex; we may use the
mapping cone, the wedge product, or tensor products in our defintion. We use a
different notation for each definition (K(x), T (x), and L(x)). We will show the
three definitions are equivalent. It should be noted that we can discuss the Koszul
complex in terms of ‘definition’ or ‘construction’. Different texts use a different
label: for the purposes of these notes we will use the term ‘definition’.

Notation 1.1. Let x1, x2, · · · , xn ∈ R where n ∈ N. Set x = x1, x2, · · · , xn and
(x′) = x1, x2, · · · , xn−1.

The first definition of the Koszul complex that we present relies on the mapping
cone. For background information pertaining to the mapping cone see [8, Chapter
VI.3].

Definition 1.2. Let X be an R-complex. For each r ∈ R, the map µr : X → X
defined by µri (m) = rm is a chain map. For each i ∈ Z, the induced map Hi(µ

r) :
Hi(X)→ Hi(X) is given by m 7→ rm.

Definition 1.3. We define the Koszul complex by induction on n.
Base case: n = 1. Then we define the Koszul complex to be the following:

K(x1) = 0→ R
x1−→ R→ 0.

Inductive step: Assume that n > 2 and K(x′) is defined. Then we define K(x) as

K(x) = Cone(K(x′)
xn−−→ K(x′)) = Cone(µxn

K(x′)).

Remark 1.4. Note that µxn

K(x′) is a chain map. When we use the definition of

the mapping cone, Cone(µxn

K(x′)) is a complex; see [8]. For more information about

mapping cones, see [4, 1.24] and [3, Section 17.3].

Notation 1.5. For an R-complex X, we let Xi denote the ith component of X.
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2 KOSZUL COMPLEXES

Definition 1.6. Let X be an R-complex. The shift of X, denoted ΣX, is defined
to be (ΣX)i = Xi−1 and ∂ΣXi = −∂Xi−1; see [8] for examples.

Fact 1.7. Consider the following short exact sequence:

0→ K(x′)→ Cone(µxn

K(x′))→ ΣK(x′)→ 0

where Cone(µxn

K(x′)) = K(x). This induces a long exact sequence in homology:

· · · → Hi(K(x′))→ Hi(K(x))→ Hi−1(K(x′))
ði−1=xn−−−−−−→ Hi−1(K(x′))→ · · · .

Recall that with the mapping cone definition of the Koszul complex we can write:

Ki(x) = Ki(x
′)⊕Ki−1(x′)

Ki−1(x) = Ki−1(x′)⊕Ki−2(x′).

From the short exact sequence of complexes

0→ K(x′)→ K(x)→ ΣK(x′)→ 0

we have the following commutative diagram:

0 // Ki(x
′) //

��

Ki(x
′)

⊕
Ki−1(x′)

ψ //

 ∂
K(x′)
i xn

0 −∂K(x′)
i−1


��

Ki−1(x′) //

−∂K(x′)
i−1

��

0

0 // Ki−1(x′)
φ //

Ki−1(x′)
⊕

Ki−2(x′)

// Ki−2(x′) // 0

where φ and ψ are the natural injection and surjection maps (respectively). Let

y ∈ Ki−1(x′) such that y ∈ Ker(−∂K(x′)
i−1 ). Then we have the following:

ψ(

(
0
y

)
) = y(

∂
K(x′)
i xn

0 −∂K(x′)
i−1

)
(

(
0
y

)
) =

(
yxn

−∂K(x′)
i−1 (y)

)
=

(
yxn

0

)
φ(yxn) =

(
yxn

0

)
We then define ð(y) = yxn = Hi−1(xn)(y).

Next we define the Koszul complex using tensor products.

Definition 1.8. We define the Koszul complex by induction on n.
Base case: n = 1. Then we define the T (x) to be the following:

T (x1) = 0→ R
x1−→ R→ 0.

Inductive step: Assume n > 2 and T (x′) is defined. Then we define T (x) as

T (x) = T (x1)⊗R T (x2)⊗R · · · ⊗R T (xn).
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Proposition 1.9. If X is a chain complex and y ∈ R, then

K(y)⊗R X = Cone(X
y−→ X).

Proof. We define the map

∂
K(y)⊗X
i :

∐
p+q=iKp(y)⊗R Xq →

∐
p+q=i−1Kp(y)⊗R Xq

by rp ⊗ xq 7→ ∂
K(y)
p (rp)⊗ xq + (−1)prp ⊗ ∂Xq (xq). The complex K(y) is defined to

be the sequence

K(y) = 0→ R1
y−→ R0 → 0.

In degree i, we have:

Xi

⊕
Xi−1

Φ−→
Xi−1

⊕
Xi−2

where

Xi
∼= R0 ⊗R Xi

Xi−1
∼= R1 ⊗R Xi−1

Xi−2
∼= R1 ⊗R Xi−2

Φ =

(
∂Xi y
0 −∂Xi−1

)
and Φ is from the definition of the mapping cone. Thus in degree i we can write

R0 ⊗R Xi

⊕
R1 ⊗R Xi−1

Φ−→
R0 ⊗R Xi−1

⊕
R1 ⊗R Xi−2

and
R0 ⊗R Xi

⊕
R1 ⊗R Xi−1

∂
K(y)⊗RX

i−−−−−−−→
R0 ⊗R Xi−1

⊕
R1 ⊗R Xi−2.

For example, if e is a basis element of R1 we have the following equalities:

Φ

(
1⊗ xi

0

)
= ∂

K(y)⊗X
i

(
1⊗ xi

0

)
=

(
R0 ⊗ ∂Xi y ⊗Xi−1

0 −R1 ⊗ ∂Xi−1

)(
1⊗ xi

0

)
=

(
1⊗ ∂Xi (xi)

0

)
∂
K(y)⊗X
i

(
0

e⊗ xi−1

)
=

(
R0 ⊗ ∂Xi y ⊗Xi−1

0 −R1 ⊗ ∂Xi−1

)(
0

e⊗ xi−1

)
=

(
y ⊗ xi−1

(−1)e⊗ ∂Xi−1(xi−1)

)
.

Hence we can rewrite Φ as Φ =

(
idR0

⊗ ∂Xi y ⊗ idxi−1

0 (−1)idR1 ⊗ ∂Xi−1

)
�

Proposition 1.10. The mapping cone definition and the tensor product definition
of the Koszul complex are equivalent, that is T (x) = K(x).

Proof. We proceed by induction on n.
Base case: n = 1. By definition T (x1) = K(x1).
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Inductive step: Assume n > 2 and T (x′) = K(x′). Then we have the sequence:

T (x) = T (x′)⊗R T (xn)

∼= K(x′)⊗R T (xn)

∼= K(x′)⊗R K(xn)

∼= Cone(µxn

K(x′))

∼= K(x)

where the second step follows from the inductive hypothesis, the third step follows
from the base case, and the fourth step follows from Proposition 1.9. �

2. Day 2

Proposition 2.1. For each integer i, one has Ki(x) ∼= R(n
i).

Proof. We proceed by induction on n.
Base case: n = 1. The Koszul complex is the following sequence:

K(x1) = 0→ R
x1−→ R→ 0.

We see from this sequence that each component of the Koszul complex is isomorphic

to R(n
i) for i = 0, 1

K0(x1) = R ∼= R(1
0)

K1(x1) = R ∼= R(1
1).

Inductive step: Assume that the result holds for Ki(x
′). Applying the mapping

cone definition of the Koszul complex we have the following sequence:

Ki(x) = Ki−1(x′)⊕Ki(x
′)

= R(n−1
i ) ⊕R(n−1

i−1)

= R(n
i)

yielding the desired result. �

We now present the third and final definition of the Koszul complex. This
definition uses the wedge product. For more information about the wedge product
see [2, Section 1.6].

Definition 2.2. Set L0(x) = R with basis element {1} and set L1(x) = Rn with

the basis elements given by the formal symbols {e1, · · · , en}. Set Li(x) = R(n
i)

with the basis elements given by the formal symbols

{ej1 ∧ · · · ∧ eji | 1 6 j1 < · · · < ji 6 n}.
We define the Koszul complex to be the sequence

L(x) = 0→ Ln(x)
∂L(x)
n−−−→ Ln−1(x)

∂
L(x)
n−1−−−→ · · ·

∂
L(x)
2−−−→ L1(x)

∂
L(x)
1−−−→ L0(x)→ 0

with the maps defined as follows:

∂
L(x)
i : Li(x)→ Li−1(x)

where ∂
L(x)
i (ej1 ∧ · · · ∧ eji) =

∑i
s=1(−1)s+1xjsej1 ∧ · · · ∧ êjs ∧ · · · ∧ eji . (By êjs we

indicate that ejs is to be omitted from the wedge product.)
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Remark 2.3. Since Li(x) is a free module, to define the module homomorphism

∂
L(x)
i we need only to define what happens to the basis vectors. For instance, the

map ∂
L(x)
1 : L1(x)→ L2(x) is defined by mapping ej 7→ xj for j = 1, . . . , n.

Example 2.4. Consider the following sequence:

(2.4.1) 0→ L3(x)
∂
L(x)
3−−−→ L2(x)

∂
L(x)
2−−−→ L1(x)

∂
L(x)
1−−−→ L0(x)→ 0.

By definition, the module L0(x) ∼= R with basis {1}. For the remaining modules
we have the following:

L1(x) ∼= R3 with basis {e1, e2, e3},
L2(x) ∼= R3 with basis {e1 ∧ e2, e1 ∧ e3, e2 ∧ e3},
L3(x) ∼= R with basis {e1 ∧ e2 ∧ e3}.

To show that the sequence (2.4.1) is exact, we show that the composition of two
maps is zero:

∂
L(x)
1 (∂

L(x)
2 (e1 ∧ e3)) = ∂

L(x)
1 (x1e3 − x3e1)

= x1∂
L(x)
1 (e3)− x3∂

L(x)
1 (e1)

= x1x3 − x3x1

= 0.

It is standard to check that the other basis vectors map to zero. For the other
composition map we have the following:

∂
L(x)
2 (∂

L(x)
3 (e1 ∧ e2 ∧ e3)) = ∂

L(x)
2 (x1e2 ∧ e3 − x2e1 ∧ e3 + x3e1 ∧ e2)

= x1∂
L(x)
2 (e2 ∧ e3)− x2∂

L(x)
2 (e1 ∧ e3) + x3∂

L(x)
2 (e1 ∧ e2)

= x1(x2e3 − x3e2)− x2(x1e3 − x3e1) + x3(x1e2 − x2e1)

= 0.

The second step follows from the fact that ∂
L(x)
2 is an R-module homomorphism,

and the fourth step is easily checked. The first and third steps are by definition of
the maps. Note that the signs are dependent upon the place an element has in the
list and not the element itself.

We can now see the shapes of the maps and write them as matrices:

∂
L(x)
3 =

 x3

−x2

x1

 ∂
L(x)
2 =

−x2 −x3 0
x1 0 −x3

0 x1 x2

 ∂
L(x)
1 =

(
x1 x2 x3

)
It is standard to show that composition of these matrices yield the zero matrix.
This is sufficient to show exactness.

Next we show that Definition 2.2 is consistent with Definitions 1.3 and 1.8 for the
Koszul complex. To accomplish this task we need to show three facts: Li(x) ∼= R(n

i),
L(x) is an R-complex, and L(x) ∼= K(x).

The first of these three is evident. We will concentrate on showing the second
fact for now and will prove the third fact later.

Lemma 2.5. L(x) is an R-complex.
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Proof. For any n and any i, we show that ∂
L(x)
i−1 ◦∂

L(x)
i = 0. Let ej1∧· · ·∧eji ∈ Li(x).

Then we have the following sequence:

∂
L(x)
i−1 (∂

L(x)
i (ej1 ∧ · · · ∧ eji))

= ∂
L(x)
i−1

(
i∑

s=1

(−1)s+1xjsej1 ∧ · · · ∧ êjs ∧ · · · ∧ eji

)

=

i∑
s=1

(−1)s+1xjs∂
L(x)
i−1 (ej1 ∧ · · · ∧ êjs ∧ · · · ∧ eji)

=

i∑
s=1

(−1)s+1xjs

(
s−1∑
r=1

(−1)r+1xjrej1 ∧ · · · ∧ êjr ∧ · · · ∧ êjs ∧ · · · ∧ eji

+
i∑

r=s+1

(−1)rxjrej1 ∧ · · · ∧ êjs ∧ · · · ∧ êjr ∧ · · · ∧ eji

)

=

i∑
s=1

(
s−1∑
r=1

(−1)s+r+2xjsxjrej1 ∧ · · · ∧ êjr ∧ · · · ∧ êjs ∧ · · · ∧ eji

+

i∑
r=s+1

(−1)r+s+1xjsxjrej1 ∧ · · · ∧ êjs ∧ · · · ∧ êjr ∧ · · · ∧ eji

)
= 0.

The sum is split in the third step to deal with the two cases in which ejr may be on
the right or the left of the ejs already removed. Note that each basis vector occurs
in each list only once and that each list has an opposite sign. Because of this, the
elements cancel each other out.

Therefore L(x) is an R-complex. �

3. Day 3

We now turn our attention to proving the fact L(x) ∼= K(x). We will aslo show
L(x) ∼= L(x1)⊗R L(x2)⊗R · · · ⊗R L(xn). First we need a few definitions.

Definition 3.1. Define the submodule L̃i(x) ⊂ Li(x) to be:

L̃i(x) = ({ej1 ∧ · · · ∧ eji | excluding wedges with en}).

Note that with this definition we have L̃i(x) ∼= R(n−1
i ).

In addition, we can write L̃(x) as the following sequence:

0→
L̃n(x)
⊕

L̃n−1(x)

∂L̃(x)
n−−−→

L̃n−1(x)
⊕

L̃n−2(x)

∂
L̃(x)
n−1−−−→ · · · ∂

L̃
2−−→
L̃1(x)
⊕

L̃0(x)

∂
L̃(x)
1−−−→

L̃0(x)
⊕
0
→ 0.

The maps from the above sequence are defined as follows:

∂
L̃(x)
i =

(
∂
L(x)
i (−1)i+1xn

0 ∂
L(x)
i−1

)
.
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Remark 3.2. L̃(x) is an R-complex. This can be seen by the following computa-
tion:(

∂
L(x)
i−1 (−1)i+1xn

0 ∂
L(x)
i−2

)(
∂
L(x)
i (−1)i+1xn

0 ∂
L(x)
i−1

)

=

(
∂
L(x)
i−1 ∂

L(x)
i (−1)i+1xn∂

L(x)
i−1 + (−1)ixn∂

L(x)
i−1

0 ∂
L(x)
i−2 ∂

L(x)
i−1

)
= 0.

Definition 3.3. Let

fi : Li(x)→
L̃i(x)
⊕

L̃i−1(x)

be defined by

e 7→



(
e

0

)
if e does not contain en

(
0

e ∧ ên

)
if e contains en

where e = ej1 ∧ ej2 ∧ · · · ∧ eji and ên indicates that en has been removed from e.

Example 3.4. Consider the case where n = 3.

L̃(x1, x2, x3) = 0→
L̃(x3)
⊕

L̃(x2)

∂
L̃(x)
3−−−→

L̃(x2)
⊕

L̃(x1)

∂
L̃(x)
2−−−→

L̃(x1)
⊕

L̃(x0)

∂
L̃(x)
1−−−→

L̃(x0)
⊕
0
→ 0.

The basis vectors are as follows:

L̃(x3)
⊕

L̃(x2)

is generated by the vector

(
0

e1 ∧ e2

)

L̃(x2)
⊕

L̃(x1)

is generated by the vectors

(
0
e1

)
,

(
0
e2

)
,

(
e1 ∧ e2

0

)

L̃(x1)
⊕

L̃(x0)

is generated by the vectors

(
e1

0

)
,

(
e2

0

)
,

(
0
1

)

L̃(x0)
⊕
0

with basis

(
1
0

)
.
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Note also that L̃(x3) = 0. From this we build the following commutative diagram:

0 // L(x3)
∂
L(x)
3 //

f3

��

L(x2)
∂
L(x)
2 //

f2

��

L(x1)
∂
L(x)
1 //

f1

��

L(x0) //

f0

��

0

0 //
L̃(x3)
⊕

L̃(x2)

∂
L̃(x)
3 //

L̃(x2)
⊕

L̃(x1)

∂
L̃(x)
2 //

L̃(x1)
⊕

L̃(x0)

∂
L̃(x)
1 //

L̃(x0)
⊕
0

// 0.

We need to show that the diagram commutes and that the maps f3, f2, and f1

are isomorphisms. To show that the diagram commutes we need only work with

the basis vectors. To show that the first square commutes, we compute ∂
L̃(x)
3 ◦ f3

and f2 ◦ ∂L(x)
3 as follows:

∂
L̃(x)
3 (f3(e1 ∧ e2 ∧ e3)) =

(
∂
L(x)
3 (−1)1+3x3

0 ∂
L(x)
2

)(
0

e1 ∧ e2

)
=

(
x3e1 ∧ e2

∂
L(x)
2 (e1 ∧ e2)

)
=

(
x3e1 ∧ e2

x1e2 − x2e1

)

f2(∂
L(x)
3 (e1 ∧ e2 ∧ e3)) = f2(x1e2 ∧ e3 − x2e1 ∧ e3 + x3e1 ∧ e2)

= f2(x1e2 ∧ e3)− f2(x2e1 ∧ e3) + f2(x3e1 ∧ e2)

=

(
0

x1e2

)
−
(

0
x2e1

)
+

(
x3e1 ∧ e2

0

)
.

For the next square we have the following with respect to the basis element e2∧ e3:

∂
L̃(x)
2 (f2(e2 ∧ e3)) =

(
∂
L(x)
2 (−1)1+2x3

0 ∂
L(x)
1

)(
0
e2

)
=

(
−x3e2

x2

)
f1(∂

L(x)
2 (e2 ∧ e3)) = f1(x2e3 − x3e2)

=

(
0
x2

)
+

(
−x3e2

0

)
.

It is left to the reader to check the remaining basis elements and squares. It is
important to note that the sign change is necessary.

Proposition 3.5. We have L(x) ∼= L̃(x).
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Proof. Since the maps are already defined, it remains to show that the following
diagram commutes:

Li(x)
∂
L(x)
i //

fi∼=
��

Li−1(x)

fi−1∼=
��

L̃i(x)
⊕

L̃i−1(x)

∂
L̃(x)
i //

L̃i−1(x)
⊕

L̃i−2(x).

We proceed by cases.
Case 1: e contains en.

∂
L̃(x)
i (fi(e)) = ∂

L̃(x)
i

((
0

e ∧ ên

))

=

(
(−1)i+1xne ∧ ên∑i−1

l=1(−1)l+1xjlej1 ∧ · · · ∧ êjl ∧ ên ∧ · · · ∧ eji

)
fi−1(∂

L(x)
i (e)) = fi−1

(
i−1∑
l=1

(−1)l+1xjlej1 ∧ · · · ∧ êjl ∧ · · · ∧ eji

)

= fi−1

(
(−1)i+1xne ∧ ên

+

i−1∑
l=1

(−1)l+1xjlej1 ∧ · · · ∧ êjl ∧ · · · ∧ eji

)

=

(
(−1)i+1xne ∧ ên

0

)
+

(
0∑i−1

l=1(−1)l+1xjlej1 ∧ · · · ∧ êjl ∧ ên ∧ · · · ∧ eji

)
Case 2: e does not contain en.

∂
L̃(x)
i (fi(e)) =

(
∂
L(x)
i (−1)i+1xn

0 ∂
L(x)
i−1

)(
e
0

)
=

(∑i
l=1(−1)l+1xjlej1 ∧ · · · ∧ êjl ∧ · · · ∧ eji

0

)
fi−1(∂

L(x)
i (e)) = fi−1

(
i∑
l=1

(−1)l+1xjlej1 ∧ · · · ∧ êjl ∧ · · · ∧ eji

)

=

(∑i
l=1(−1)l+1xjlej1 ∧ · · · ∧ êjl ∧ · · · ∧ eji

0

)
Hence we conclude that the diagram commutes. �

Remark 3.6. Note that we also have the map:

Li(x) ∼= R(n
i) fi−→

R(n−1
i )

⊕
R(n−1

i−1)

∼=
L̃i(x)
⊕

L̃i−1(x)

.
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The definition we have for the exterior algebra can be written as a tensor product.

Proposition 3.7. There exists an isomorphism

L(x) ∼= L(x1)⊗ · · · ⊗ L(xn).

Proof. Base case: x = x1. We have L(x1) ∼= L(x1).
Inductive step: Assume that L(x′) ∼= L(x1) ⊗ · · · ⊗ L(xn−1). Note L(xn) ∼=

K(xn). In Proposition 1.9 we proved that K(y)⊗RX = Cone(µyX) with differentials
given by multiplication by the matrix:(

∂Xi y
0 −∂Xi−1

)
.

For this proof we use y = xn. We show

L̃(x) ∼= L(x1)⊗R L(x2)⊗R · · · ⊗R L(xn) ∼= L(x′)⊗R L(xn).

Define the map gi : L̃(x)→ L(x′)⊗ L(xn) by multiplication by the matrix(
1 0
0 (−1)i+1

)
.

Then we have the commutative diagram with exact rows:

L̃n(x)
⊕

L̃n−1(x)

//

��

L̃n−1(x)
⊕

L̃n−2(x)

//

��

· · · //
L̃1(x)
⊕

L̃0(x)

//

��

L̃0(x)
⊕
0

��
0
⊕

Ln−1(x′)

//
Ln−1(x′)
⊕

Ln−2(x′)

// · · · //
L1(x′)
⊕

L0(x′)

//
L0(x′)
⊕
0

Each component of L(x′) ⊗ L(xn) has Li(x
′) ∼= R(n−1

i ). The maps down are one

to one and onto, therefore they are isomorphisms. Observe that ∂
L̃(x)
i = ∂

L(x′)
i .

Showing that the squares commute is left as an exercise for the reader. Applying
the inductive hypothesis we have

L(x) ∼= L̃(x) ∼= L(x′)⊗ L(xn) ∼= L(x1)⊗ · · · ⊗ L(xn).

�

The next corollary proves that Definitions 1.3 and 2.2 of the Koszul complex are
equivalent.

Corollary 3.8. We have L(x) ∼= K(x).

Proof. For any n we have K(xn) = L(xn). This explains the second step in the
following sequence

L(x) ∼= L(x1)⊗ · · · ⊗ L(xn) ∼= K(x1)⊗ · · · ⊗K(xn) ∼= K(x).

The first step is from Proposition 3.7 and the third step is from Proposition 1.9.
Thus L(x) ∼= K(x). �
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4. Day 4

Now we show that the Koszul complex is independent of the generating sequence.
In other words, if (R,m, k) is a local ring and a1, · · · , an, b1, · · · , bn ∈ R with
(a)R = (b)R, then K(a) = K(b).

It should be noted that for the proof given here it is necessary that the ring
is local. Although the Koszul complex is probably independent of the generating
sequence in the general case, we do not have at this moment a proof concerning
the general case. For the proof we present here, it is crucial that the generating
sequences we work with be of the same length. If the sequences are minimal gener-
ating sequences, their length must be equal. The proof given does not require that
the generating sequences be minimal, only that they have equal length.

Remark 4.1. Recall that Kj(a) ∼= R(n
j) with basis vectors {ei1 ∧ · · · ∧ eij |1 6 i1 <

· · · < ij 6 n} and we write ei1 ∧ · · · ∧ êir ∧ · · · ∧ eij to indicate that eir has been
omitted from the wedge product.

Definition 4.2. Let a = a1, · · · , an ∈ R be a sequence. Fix ei1∧· · ·∧eij ∈ Kj−1(a)
such that 1 6 i2 < · · · < ij 6 n. Let 1 6 l 6 n and define el∧ei2 ∧· · ·∧eij ∈ Kj(a)
to be as follows:

el∧ei2∧· · ·∧eij =



0 if l ∈ {i2, · · · , ij}
el ∧ ei2 ∧ · · · ∧ eij if l < i2

−ei2 ∧ el ∧ ei3 ∧ · · · ∧ eij if i2 < l < i3
...

(−1)s+1ei2 ∧ · · · ∧ eis ∧ el ∧ eis+1 ∧ · · · ∧ eij if is < l < is+1

...

(−1)j+1ei2 ∧ · · · ∧ eij ∧ el if ij < l.

Each time we permute the order of the wedge product, we multiply by −1. Thus an
even number of permutations yields a plus sign and an odd number of permutations
yields a negative sign.

Lemma 4.3. Let a = a1, · · · , an ∈ R be a sequence. Then

∂
K(a)
j (el∧ei2 ∧· · ·∧eij ) = xlei2 ∧· · ·∧eij +

j∑
t=2

(−1)t+1xitel∧ei2 ∧· · ·∧ êit ∧· · ·∧eij .

Proof. Case 1: l ∈ {i2, · · · , ij}. We see by Definiton 4.2 that

∂
K(a)
j (el ∧ ei2 ∧ · · · ∧ eij ) = 0.
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Assume that l = is for some s. For the right hand side of the desired equality we
have the following:

RHS = xisei2 ∧ · · · ∧ eis ∧ · · · ∧ eij
+ (−1)s+1xiseis ∧ ei2 ∧ · · · ∧ êis ∧ · · · ∧ eij
+

∑
t>2,t6=s

(−1)t+1xiteis ∧ ei2 ∧ · · · ∧ êit ∧ · · · ∧ eij

= xisei2 ∧ · · · ∧ eis ∧ · · · ∧ eij
+ (−1)s+1xiseis ∧ ei2 ∧ · · · ∧ êis ∧ · · · ∧ eij

= xisei2 ∧ · · · ∧ eis ∧ · · · ∧ eij
+ (−1)s+1(−1)sxisei2 ∧ · · · ∧ eis ∧ · · · ∧ eij

= 0.

In the first step we separate the sum where t = s from the larger sum. In step two,
the sum

∑
t>2,t6=s(−1)t+1xiteis ∧ ei2 ∧ · · · ∧ êit ∧ · · · ∧ eij vanishes since es ∧ es = 0

appears in every term of the sum. By permuting the order of the wedge product in
step three, we have a sign change. This produces the cancellation in step four.

Case 2: is < l < is+1 for some s ∈ {2, . . . , j}. For the left hand side of the
desired equality we have the following:

LHS = (−1)s+1∂
K(a)
j (ei2 ∧ · · · ∧ eis ∧ el ∧ eis+1 ∧ · · · ∧ eij )

= (−1)s+1

(
s∑
t=2

(−1)txitei2 ∧ · · · ∧ êit ∧ · · · ∧ eis ∧ el ∧ eis+1
∧ · · · ∧ eij

+ (−1)s+1xlei2 ∧ · · · ∧ eis ∧ eis+1 ∧ · · · ∧ eij

+

j∑
t=s+1

(−1)t+1xitei2 ∧ · · · ∧ eis ∧ el ∧ eis+1
∧ · · · ∧ êit ∧ · · · ∧ eij

)
.

The second step splits up the sum into the cases where el is the the right, between,
and to the left of the wedge es∧es+1. For the right hand side of the desired equality
we have the following:

RHS = xlei2 ∧ · · · ∧ eij

+

s∑
t=2

(−1)t+1xitel ∧ ei2 ∧ · · · ∧ êit ∧ · · · ∧ eis ∧ · · · ∧ eij

+

j∑
t=s+1

(−1)t+1xitel ∧ ei2 ∧ · · · ∧ eis ∧ eis+1
∧ · · · ∧ êit ∧ · · · ∧ eij

= xlei2 ∧ · · · ∧ eij

+

s∑
t=2

(−1)t+1(−1)sxitei2 ∧ · · · ∧ êit ∧ · · · ∧ eis ∧ el ∧ eis+1
∧ · · · ∧ eij

+

j∑
t=s+1

(−1)t+1(−1)s+1xitei2 ∧ · · · ∧ eis ∧ el ∧ eis+1 ∧ · · · ∧ êit ∧ · · · ∧ eij .
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For the second step, the element el is moved in two of the sums and the wedge
product is multiplied by the necessary sign change. By matching up the terms
from the LHS and RHS, we see that the two are equal.

Cases 3 and 4: l < i2 or ij < l. These cases are similar to Case 2 and are left to
the reader as an exercise. �

Lemma 4.4. Let b = b1, · · · , bn ∈ R and set a1 =
∑n
l=1 rlbl such that rl ∈ R for

all l = 1, · · · , n. Let b† = a1, b2, · · · , bn. Let the basis vectors of K(b†) be in terms
of the elements ei, and let the basis vectors of K(b) be in terms of the elements fi.
Define the map

ψ : K(b†)→ K(b)

as follows:

in degree 0 1 7−→ 1

in degree 1

{
e1 7−→

∑n
l=1 rlfl

ei 7−→ fi for i > 2

in degree j > 2

{
e1 ∧ ei2 ∧ · · · ∧ eij 7−→

∑n
l=1 rlfl ∧ fi2 ∧ · · · ∧ fij

ei1 ∧ · · · ∧ eij 7−→ fi1 ∧ · · · ∧ fij .

Then ψ is a chain map.

Proof. To show that ψ is a chain map, it suffices to show that the diagrams commute
with respect to the basis elements.

· · · // Kj(b
†)

∂
K(b†)
j //

ψj

��

Kj−1(b†)

ψj−1

��

// · · ·

· · · // Kj(b)
∂
K(b)
j // Kj−1(b) // · · ·

For the case where j = 1, we have the following diagram:

Rn
∂
K(b†)
1 //

ψ1

��

R

id
��

Rn
∂
K(b)
1 // R.

Below are the basis vectors. On the right is the case where i = 1 and on the left is
the case where i > 2

e1
� //

_

��

a1 =
∑n
l=1 rlbl_

��

ei
� //

_

��

bi_

��∑n
l=1 rlfl

� //∑n
l=1 rlbl fi

� // bi.
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When j > 2, we have two cases. We show first the case where i1 > 1:

ei1 ∧ · · · ∧ eij
� //

_

��

∑j
t=1(−1)t+1bitei1 ∧ · · · ∧ êit ∧ · · · ∧ eij_

��
fi1 ∧ · · · ∧ fij

� //∑j
t=1(−1)t+1bitfi1 ∧ · · · ∧ f̂it ∧ · · · ∧ fij .

Next we show the case where i1 = 1.

ψj−1(∂
K(b†)
j (e1 ∧ ei2 ∧ · · · ∧ eij )) = ψj−1

(
a1ei2 ∧ · · · ∧ eij

+

j∑
t=2

(−1)t+1bite1 ∧ ei2 ∧ · · · ∧ êit ∧ · · · ∧ eij

)
= a1fi2 ∧ · · · ∧ fij+

j∑
t=2

(−1)t+1bit

(
n∑
l=1

rlfl ∧ fi2 ∧ · · · ∧ f̂it ∧ · · · ∧ fij

)

∂
K(b)
j (ψj(e1 ∧ ei2 ∧ · · · ∧ eij )) = ∂

K(b)
j

(
n∑
l=1

rlfl ∧ fi2 ∧ · · · ∧ fij

)

=

n∑
l=1

rl

(
∂
K(b)
j (fl ∧ fi2 ∧ · · · ∧ fij )

)

=

n∑
l=1

rl

(
blfi2 ∧ · · · ∧ fij

+

j∑
t=2

(−1)t+1bitfl ∧ fi2 ∧ · · · ∧ f̂it ∧ · · · ∧ fij

)

=

n∑
l=1

rlblfi2 ∧ · · · ∧ fij+

j∑
t=2

(−1)t+1bit

(
n∑
l=1

rlfl ∧ fi2 ∧ · · · ∧ f̂it ∧ · · · ∧ fij

)
= a1fi2 ∧ · · · ∧ fij+

j∑
t=2

(−1)t+1bit

(
n∑
l=1

rlfl ∧ fi2 ∧ · · · ∧ f̂it ∧ · · · ∧ fij

)
where the third step in the second sequence above follows from Lemma 4.3. �

Lemma 4.5. Let b1, · · · , bn, r1, · · · , rn ∈ R and assume that r1 is a unit. Define
a1 =

∑n
l=1 rlbl and b† = a1, b2, · · · , bn. Then the map

ψ : K(b†)→ K(b)

is an isomorphism.

Proof. We proceed by constructing the inverse to ψ. Note that ψ is well-defined.
Since r1 is a unit, we can solve the equation a1 =

∑n
l=1 rlbl for b1, obtaining
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b1 = r−1
1 (a1 −

∑n
l=1 rlbl). Using a procedure similar to that in Lemma 4.4, the

sequence a1, b2, · · · , bn gives rise to the sequence b1, b2, · · · , bn. There exists a chain
map

Φ : K(b)→ K(b†)

that maps the basis vectors as follows:

f1 7−→ r−1
1 e1 −

n∑
l=2

r−1
1 rlel

fi 7−→ ei for i > 2.

The wedges are defined with a procedure similar to that in Lemma 4.4.
Next we need to show that the compositions of the maps Φ and ψ yield the

appropriate identity. We show the case for Φ ◦ ψ and leave the other case as an
exercise for the reader. It suffices to check the basis vectors with the following
computations:

Φ(ψ(e1 ∧ ei2 ∧ · · · ∧ eij )) = Φ

(
n∑
l=1

rlfl ∧ fi2 ∧ · · · ∧ fij

)

= r1Φ(f1 ∧ fi2 ∧ · · · ∧ fij ) +

n∑
l=2

rlΦ(fl ∧ fi2 ∧ · · · ∧ fij )

= r1

(
r−1
1 e1 ∧ ei2 ∧ · · · ∧ eij −

n∑
l=2

r−1
1 rlel ∧ ei2 ∧ · · · ∧ eij

)

+

n∑
l=2

rlel ∧ ei2 ∧ · · · ∧ eij

= e1 ∧ ei2 ∧ · · · ∧ eij

Φ(ψ(e1)) = Φ

(
n∑
l=1

rlfl

)

= r1Φ(f1) + Φ

(
n∑
l=2

rlfl

)

= r1

(
r−1
1 e1 −

n∑
l=2

r−1
1 rlel

)
+

n∑
l=2

rlel

= e1.

�

Remark 4.6. For following theorem, we use Nakayama’s lemma; this popular
lemma can be found in many sources including [1, Proposition 2.6], [5, Theorem
2.2], or [6, Proposition 4.51]. For this purpose we assume that the ring (R,m, k) is
local. Since there exists a version of Nakayama’s lemma for the non-local case, it
would also suffice to assume that the sequences used are contained in the Jacobson
radical. As another alternative, there exists a version of Nakayama’s lemma for
graded rings; see [2, Exercise 1.5.24].
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Theorem 4.7. Assume that (R,m, k) is local. Let a = a1, · · · , an ∈ R and b =
b1, · · · , bn ∈ R such that I = (a)R = (b)R is a minimal generating sequence. Then
K(a) ∼= K(b).

Proof. Step 1: We claim that for all i = 1, · · · , n we have ai /∈ (a1, · · · , ai−1)R+mI.
Note that this is a version of Nakayama’s lemma. Since a1, · · · an ∈ I/mI is a basis,
we conclude that a1, · · · , ai−1, ai are linearly independent.

Step 2: We claim that there exists r11, · · · , r1n ∈ R such that

(4.7.1) a1 =

n∑
j=1

rijbj

where rij a unit for some j. If not, then rij ∈ m for all j. This implies that
a1 ∈ mI. But since a1 is a minimal generator for I, this is a contradiction of
Nakayama’s lemma.

Step 3: Reorder b1, · · · , bn such that r11 is a unit. We claim I = (a1, b2, · · · , bn)R.
⊇: This containment is evident.
⊆: Since I = (b)R, it suffices to show that bj ∈ (a1, b2, · · · , bn)R for all j =

1, · · · , n. When j > 2, this is clear. In the case j = 1, since r11 is a unit we can
solve equation (4.7.1) for b1. Then b1 = r−1

11 (a1 −
∑n
j=2 r1jbj) ∈ (a1, b2, · · · , bn)R.

Step 4: Since a2 ∈ I = (a1, b2, · · · , bn)R, we have the equation a2 = r21a1 +∑n
j=2 r2jbj . We claim that there exists a j > 2 such that r2j is a unit. If not, then

a2 ∈ (a1)R+ mI. This contradicts Step 1 when i = 2.
Step 5: Reorder b2, · · · , bn such that r22 is a unit. Using the method in Step 3,

we conclude that I = (a1, a2, b3, · · · , bn)R.
Step 6: In this step we use what is informally known as Roger Induction (see

Sather-Wagstaff for an explanation). We reorder the bj ’s so that ai =
∑i−1
j=1 rijaj +∑n

j=i rijbj where rij is a unit and I = (a1, · · · , ai−1, bi, · · · , bn)R.
Step 7: Lemma 4.5 explains the even steps in following sequence:

K(b) = K(b1, · · · , bn)

∼= K(a1, b2, · · · , bn)

∼= K(b2, a1, b3, · · · , bn)

∼= K(a2, a1, b3, · · · , bn)

...

∼= K(a1, a2, · · · , an)

= K(a).

The first and last steps are by definition. The remaining steps follow from Defini-
tion 1.8. �

When we remove the assumption that the generating sequences are minimal from
the above theorem, the result is the following.

Theorem 4.8. Let (R,m, k) be a local ring. Let a = a1, · · · , an ∈ R and b =
b1, · · · , bn ∈ R such that I = (a)R = (b)R is a generating sequence. Then K(a) ∼=
K(b).

Proof. If the sequences are minimal generating sequences, then we are done. As-
sume then that the sequences are not minimal. Nakayama’s lemma implies that we
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can reorder any sequence so that the initial elements are minimal and the remain-
ing elements are redundant. Reorder a and b so that a1, · · · , am and b1, · · · , bm are
minimal generating sequences.

We show that K(b) ∼= K(b1, · · · , bm, 0, · · · , 0) where there are n−m zeros. Since
bm+1 ∈ I = (b1, · · · , bm)R, we can write bm+1 =

∑m
j=1 rjbj for some r1, . . . , rm ∈ R.

Then 0 =
∑m
j=1 rjbj+(−1)bm+1. Since −1 is a unit, Lemma 4.5 yields the following

sequence:

K(b1, · · · , bm, bm+1, · · · , bn) ∼= K(b1, · · · , bm, 0, bm+2, · · · , bn)

...

∼= K(b1, · · · , bm, 0, · · · , 0).

This explains the first and fifth steps in the following sequence:

K(b) ∼= K(b1, · · · , bm, 0, · · · , 0)

∼= K(b1, · · · , bm)⊗R K(0, · · · , 0)

∼= K(a1, · · · , am)⊗R K(0, · · · , 0)

∼= K(a1, · · · , am, 0, · · · , 0)

∼= K(a).

The second and fourth steps are by definition and the third step follows from
Theorem 4.7. �

The next example shows that although it is not necessary that the generating
sequences a and b be minimal, it is necessary that the sequences be of the same
length for K(a) to be isomorphic to K(b).

Example 4.9. Consider the complexes K(0) and K(0, 0). These complexes are
not isomorphic nor are they quasiisomorphic. We have the following:

K(0) = 0→ 0→ R
0−→ R→ 0 ∼= R⊕ ΣR

K(0, 0) = 0→ R
0−→ R2 0−→ R→ 0 ∼= R⊕ ΣR2 ⊕ ΣR2.

The homologies are different as well:

Hi(K(0)) ∼= Ki(0) ∼= R(1
i)

Hi(K(0, 0)) ∼= Ki(0, 0) ∼= R(2
i).

Thus K(0) and K(0, 0) are not even quasiisomorphic much less isomorphic.

Example 4.10. The Koszul complexes K(x) and K(x, 0) are not isomorphic nor
are they quasiisomorphic.

Lemma 4.11. If u ∈ R is a unit, then K(u, a2, · · · , an) is exact.

Proof. Using the mapping cone definition of the Koszul complex, we have

K(u, a2, · · · , an) ∼= K(u)⊗R K(a2, · · · , an) ∼= Cone(µuK(a2,··· ,an)).

Since u is a unit, the map µuK(a2,··· ,an) is an isomorphism. Thus µuK(a2,··· ,an) is a

quasiisomorphism and Cone(µuK(a2,··· ,an)) is exact. �

Theorem 4.12. Let a1, · · · , an, b1, · · · , bn ∈ R such that (a)R = (b)R. Then we
have the following:
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(a) For all p ∈ Spec(R), we have Hi(K(a))p ∼= Hi(K(b))p for all i.
(b) Fix an integer i. Then Hi(K(a)) = 0 if and only if Hi(K(b)) = 0.

Proof. For part (a), we have the following sequence:

Hi(K(a))p ∼= Hi(K(a)p) ∼= Hi(K(b)p) ∼= Hi(K(b))p.

The first and last isomorphisms are Rp-module isomorphisms. For the second step,
the equality (a)R = (b)R implies that (a)Rp = (b)Rp. Theorem 4.8 implies that
KRp(a) ∼= KRp(b) yielding the desired isomorphism.

For part (b), we use the fact that homology is a local property. Part (a) implies
that Hi(K(a)) = 0 if and only if Hi(K(a))p = 0 for all p ∈ Spec(R) if and only if
Hi(K(b))p = 0 for all p ∈ Spec(R) if and only if Hi(K(b)) = 0. �

5. Day 5

Our next goal is to show that K(x) is self-dual, that is, we show

Σn HomR(K(x), R) ∼= K(x).

This is accomplished in Theorem 7.1. Before we get to that, we introduce some
background information about homomorphisms of complexes together with shifts
of complexes, and some natural maps. Much of the following information can be
found in [4].

Remark 5.1. Let X and Y be R-complexes. Then HomR(X,Y ) is an R-complex
where the lth module is defined as

HomR(X,Y )l =
∏
p∈Z

HomR(Xp, Yp+l).

The maps of the complex HomR(X,Y ) act on a family of R-module homomorphisms
(αp) ∈

∏
p∈Z HomR(Xp, Yp+l) where αp : Xp → Yp+l. These maps are defined as

follows

∂
HomR(X,Y )
l : HomR(X,Y )l → HomR(X,Y )l−1

where ∂
HomR(X,Y )
l ((αp)) = (∂Yp+l ◦ αp − (−1)lαp−1 ◦ ∂Xp ) and

(∂Yp+l ◦ αp − (−1)lαp−1 ◦ ∂Xp ) : Xp → Yp+l−1.

See [4, (3.1)] for details showing that the above map is a chain map.

Example 5.2. Compute Σ1 HomR(K(x), R) = ΣHomR(K(x), R). We have the
following sequence

K(x) : 0 // R
x // R // 0

degree : 1 2.

We compute the components of the complex

HomR(K(x), R)l =
∏
p∈Z

HomR(K(x)p, Rp+l).

We have Rp+l 6= 0 when p+ l = 0 and K(x)p 6= 0 when p = 0 or p = 1. Thus there
are two cases which we need to check. In the case where p = 0 and l = 0, we have
the following

HomR(K(x), R)0 = HomR(K(x)0, R0) = HomR(R,R) ∼= R.
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For the case p = 1 and l = −1, we have the following

HomR(K(x), R)−1 = HomR(K(x)1, R0) = HomR(R,R) ∼= R.

For the maps, we have by definition

∂
HomR(K(x),R)
0 ((αp)) = (∂Rp ◦ αp − (−1)0αp−1 ◦ ∂K(x)

p ).

Since the map ∂Rp = 0 for all p and ∂
K(x)
p = 0 for all p 6= 1, we have the following

∂
HomR(K(x),R)
0 ((αp)) = (· · · , 0,−α0 ◦ ∂K(x)

1 , 0, · · · ).

Thus we have −α0 ◦ x1 = −∂R0 and hence

HomR(K(x), R) : 0 // R
−x // R // 0

degree : 0 1.

Then we have

ΣHomR(K(x), R)0 = HomR(K(x), R)0−1 = R

ΣHomR(K(x), R)1 = HomR(K(x), R)1−1 = R

ΣHomR(K(x), R)i = 0 for i 6= 0, 1.

Thus we have the following complex and map:

ΣHomR(K(x), R) : 0 // R
x // R // 0

degree : 1 0

∂
ΣHomR(K(x),R)
1 = (−1)(−x) = x.

The following lemma can be found in [4, (3.29)] described as the covariant Hom
and shift functors.

Lemma 5.3. Let X and Y be R-complexes. Then one has

HomR(X,ΣmY ) ∼= Σm HomR(X,Y ).

Proof. We proceed by definition showing that the modules and the maps are the
same. We begin by considering the left hand side of the desired isomorphism:

HomR(X,ΣmY )l =
∏
p∈Z

HomR(Xp, (Σ
mY )p+l) =

∏
p∈Z

HomR(Xp, Yp+l−m).

For the right hand side of the desired isomorphism, we have the following:

Σm HomR(X,Y )l = HomR(X,Y )l−m =
∏
p∈Z

HomR(Xp, Yp+l−m).

Since they have the same modules, it remains to show that the maps are also the
same. For the left hand side, the maps are as follows:

∂
HomR(X,ΣmY )
l ((αp)) = (∂Σ

mY
p+l ◦ αp − (−1)lαp−1 ◦ ∂Xp )

= ((−1)m∂Yp+l−m ◦ αp − (−1)lαp−1 ◦ ∂Xp ).
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The maps for the right hand side are as follows:

∂
Σm HomR(X,Y )
l ((αp)) = (−1)m∂

HomR(X,Y )
l−m ((αp))

= (−1)m(∂Yp+l−m ◦ αp − (−1)l−mαp−1 ◦ ∂Xp )

= ((−1)m∂Yp+l−m ◦ αp − (−1)lαp−1 ◦ ∂Xp ).

Since the maps and the modules are the same, we have the desired isomorphism. �

The following lemma can be found in [4, (3.46)] described as the contravariant
Hom and shift functors.

Lemma 5.4. Let X and Y be R-complexes. Then one has

HomR(Σ−mX,Y ) ∼= Σm HomR(X,Y ).

Proof. We proceed by showing that HomR(Σ−mX,Y ) ∼= HomR(X,ΣmY ) and ap-
plying Lemma 5.3 to achieve the desired isomorphism. With regard to the modules,
we have the following for the right hand side:

HomR(Σ−mX,Y )l =
∏
p∈Z

HomR((Σ−mX)p, Yp+l)

=
∏
p∈Z

HomR(Xp+m, Yp+l)

=
∏
p∈Z

HomR(Xp, Yp+l−m).

For the left hand side we have the following:

HomR(X,ΣmY )l =
∏
p∈Z

HomR(Xp, (Σ
mY )p+l)

=
∏
p∈Z

HomR(Xp, Yp+l−m).

Next we want to show that the map

ν : HomR(X,ΣmY )l → HomR(Σ−mX,Y )l

is a chain map, giving us the desired isomorphism. Define the map

νl : HomR(X,ΣmY )l → HomR(Σ−mX,Y )l

by (αp) 7−→ (−1)ml(αp+m). We need to show

νl−1 ◦ ∂HomR(X,ΣmY )
l = ∂

HomR(Σ−mX,Y )
l ◦ νl.

For the left hand side, we have the following:

νl−1(∂
HomR(X,ΣmY )
l ((αp))) = νl−1((∂Σ

mY
p+l ◦ αp − (−1)lαp−1 ◦ ∂Xp ))

= (−1)m(l−1)(∂Σ
mY

p+l+m ◦ αp+m − (−1)lαp+m−1 ◦ ∂Xp+m)

= (−1)m(l−1)((−1)m∂Yp+m ◦ αp+m
− (−1)lαp+m−1 ◦ ∂Xp+m)

= ((−1)m(l−1)+m∂Yp+l ◦ αp+m
− (−1)m(l−1)+lαp+m−1 ◦ ∂Xp+m)

= ((−1)ml∂Yp+l ◦ αp+m − (−1)ml−m+lαp+m−1 ◦ ∂Xp+m).
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On the right hand side we have

∂
HomR(Σ−mX,Y )
l (νl((αp))) = ∂

HomR(Σ−mX,Y )
l ((−1)ml(αp+m))

= (−1)ml∂Yp+l ◦ αp+m − (−1)ml+lαp+m−1 ◦ ∂Σ
−mX

p

= (−1)ml∂Yp+l ◦ αp+m − (−1)ml+l+mαp+m−1 ◦ ∂Xp+m.

Since (−1)m = (−1)−m, we have equality and the map ν is a chain map. �

6. Days 6 and 7

Our goal is still to show that the Koszul complex is self-dual. Before we can
accomplish this task, we must first discuss the Hom-tensor adjointness map over
complexes.

Remark 6.1. Let L, M , andN be R-modules. Hom-tensor adjointness for modules
is the map

ρ : HomR(L⊗R N,M)→ HomR(L,HomR(NM, ))

given by

ρ(ψ)(l)(n) = ψ(l ⊗ n)

where l ∈ L, n ∈ N , and ψ ∈ HomR(L ⊗R N,M). This map is always an isomor-
phism; see [7, Theorem 2.75, 2.76]

The following lemma can be found in [4, (5.4)] with the proof at [4, (5.9)].

Lemma 6.2. (Hom-tensor adjointness of complexes)
Let X, Y , and Z be R-complexes. Then there exists an R-complex isomorphism

ρZYX : HomR(Z ⊗R Y,X)→ HomR(Z,HomR(Y,X)).

Proof. We use Remark 6.1 to show the existence of isomorphisms between the
modules of the two complexes in the above map. We write the lth component of
each complex in terms of a module. Modules of the complex HomR(Z⊗R Y,X) are
as follows:

HomR(Z ⊗R Y,X)l ∼=
∏
n∈Z

HomR((Z ⊗R Y )n, Xn+l)

∼=
∏
n∈Z

HomR(
∐
p∈Z

(Zp ⊗R Yn−p), Xn+l)

∼=
∏
p,n∈Z

HomR(Zp ⊗R Yn−p, Xn+l)

∼=
∏

p,m∈Z
HomR(Zp ⊗R Ym, Xm+p+l).

The first and second steps are by definition. The third step is standard, and the
fourth step follows from setting n = m+ p.
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Modules of the complex HomR(Z,HomR(Y,X)) are as follows:

HomR(Z,HomR(Y,X))l ∼=
∏
p∈Z

HomR(Zp,HomR(Y,X)p+l)

∼=
∏
p∈Z

HomR(Zp,
∏
m∈Z

HomR(Ym, Xm+p+l))

∼=
∏

p,m∈Z
HomR(Zp,HomR(Ym, Xm+p+l)).

The first and second steps are by definition and the third step is standard.
Remark 6.1 implies that there exists an isomorphism between the individual

modules. To show that the isomorphisms between each component yield an iso-
morphism of complexes, we show that all the diagrams commute.

Set

Ul =
∏
n∈Z

HomR(Z ⊗R Yn, Xn+l) ∼=
∏
n∈Z

HomR(
∐
p∈Z

Zp ⊗R Xn−p, Xn+l)

and U ′l =
∏
n,p∈Z HomR(Zp⊗RYn−p, Xn+l). Then the following diagram commutes

Ul
φl

∼=
//

∂U
l

��

U ′l

∂U′
l

��
Ul−1

φl−1

∼= // U ′l−1.

We have the following commutative diagram

Zp ⊗R Yn−p
εp //

αn◦εp
((

∐
p∈Z Zp ⊗R Yn−p

αn

��
Xn+l

where εp is the inclusion map and αn ∈ HomR(
∐
p∈Z Zp ⊗R Yn−p, Xn+l). For

βn,p ∈ HomR(Zp ⊗R Yn−p, Xn+l), we have the following:∑
p∈Z

βn,p :
∐
p∈Z

Zp ⊗R Yn−p −→ Xn+l

{zp ⊗ yn−p}p 7−→
∑
p∈Z

βn,p(zp ⊗ yn−p).

The next display defines the maps between Ul and U ′l .

φl :
∏
n∈Z

HomR(
∐
p∈Z

Zp ⊗R Yn−p, Xn+l) −→
∏
n,p∈Z

HomR(Zp ⊗R Yn−p, Xn+l)

{αn :
∐
p∈Z

Zp ⊗R Yn−p → Xn+l}n 7−→ {αn ◦ εp : Zp ⊗R Yn−p → Xn+l}n,p

ψl :
∏
n,p∈Z

HomR(Zp ⊗R Yn−p, Xn+l) −→
∏
n∈Z

HomR(
∐
p∈Z

Zp ⊗R Yn−p, Xn+l)

{βn,p : Zp ⊗R Yn−p → Xn+l}n,p 7−→ {
∑
p∈Z

βn,p :
∐
p∈Z

Zp ⊗R Yn−p}n
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If we start with a map in U ′l , then by applying φl ◦∂Ul ◦ψl we have the following:

ψl({βn,p : Zp ⊗R Yn−p → Xn+l}n,p)

= {
∑
p∈Z

βn,p :
∐
p∈Z

Zp ⊗R Yn−p → Xn+l}n

∂Ul

{∑
p∈Z

βn,p :
∐
p∈Z

Zp ⊗R Yn−p → Xn+l}n


= {∂Xn+l :

∑
p∈Z

βn,p − (−1)l

∑
p∈Z

βn+l−1,p ◦ ∂Z⊗RY
n :

∐
p∈Z

Zp ⊗R Yn−p → Xn+l−1}n

φl({∂Xn+l ◦
∑
p∈Z

βn,p − (−1)l
∑
p∈Z

βn+l−1,p ◦ ∂Z⊗RY
n }n)

= {∂Xn+l

∑
p∈Z

βn,p ◦ εp − (−1)l
∑
p∈Z

βn+l−1,p ◦ ∂Z⊗RY
n ◦ εp

: Zp ⊗R Yn−p → Xn+l−1}n,p
And as an aside we have written:

∂Z⊗RY
n (zp ⊗ yn−p) = ∂Zp (zp)⊗ yn−p + (−1)pzp ⊗ ∂Yn−p(yn−p)∑

p∈Z
βn+l−1,p(∂

Z⊗RY
n (εp(zp ⊗ yn−p))) =

∑
p∈Z

βn+l−1,p(· · · , 0, ∂Zp (zp)⊗ yn−p, (−1)pzp ⊗ ∂Yn−p(yn−p), 0, · · · )

= βn+l−1,p−1(∂Zp (zp)⊗ yn−p + (−1)pzp ⊗ ∂Yn−p(yn−p))
=
(
βn+l−1,p−1 ◦ (∂Zp ⊗R Yn−p) + (−1)pβn+l−1,p−1 ◦ (Zp ⊗R ∂Yn−p)

)
(zp ⊗ yn−p).

By applying ∂U
′

l to a map in U ′l , we have the following:

∂U
′

l = ∂Xn+lβn,p −
(
−1)l

(
βn+l−1,p−1 ◦ (∂Zp ⊗R Yn−p)+

(−1)p+lβn+l−1,p ◦ (Zp ⊗R ∂Yn−p)
)
(zp ⊗ yn−p).

Next we set

Wl =
∏
p∈Z

HomR(Zp,
∏
m∈Z

HomR(Ym, Xm+p+l))

and W ′l =
∏
m,p∈Z HomR(Zp,HomR(Ym, Xm+p+l)). Then the following diagram

commutes in a manner similar to the previous diagram:

Wl
ξl

∼=
//

∂W
l

��

W ′l

∂W ′
l

��
Wl−1

ξl−1

∼= // W ′l−1

where we have

∂Wl (σm,p(zp)) = ∂Xp+m+l◦(σm,p(zp))−(−1)p+l(σm,p(zp))◦∂Ym−(−1)lσm,p−1(∂Zp (zp))
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for σm,p ∈
∏
p∈Z HomR(Zp,

∏
m∈Z HomR(Xm, Ym+p+l)) and zp ∈ Zp for all p ∈ Z.

Note that each ρi is a natural isomorphism – we leave this to the reader to verify.
It remains to show that ρ is a chain map by showing that the following diagram
commutes:

W ′l
ρl //

∂W ′
l

��

U ′l

∂U′
l

��
W ′l−1 ρl−1

// U ′l−1.

We have the following equation

(ρl−1 ◦ ∂Wl )({σm,p}m,p) = ρl−1(∂W
′

l ({σm,p}m,p)) : Zp ⊗R Ym → Xm+p+l.

For any zp ⊗ ym ∈ Zp ⊗R Ym we have

ρl−1(∂W
′

l ({σm,p}m,p))(zp ⊗ ym) = ∂W
′

l ({σm,p}m,p)(zp)(ym)

= ∂Xp+l+m((σm,p(zp)(ym))

− (−1)p+l(σm,p(zp))(∂
Y
m(ym))

− (−1)l(σm,p−1(∂Zp (zp)))(ym).

For the other direction we have

∂U
′

l (ρl({σm,p}m,p)) = ∂Xm+p+l ◦ ρl({σm,p}m,p)m+p,p

− (−1)lρl({σm,p}m,p)m,p−1 ◦ ∂Yp ⊗R Ym
− (−1)p+lρl({σm,p}m,p)m−1,p ◦ Zp ⊗R ∂Ym.

Evaluated at zp ⊗ ym ∈ Zp ⊗R Ym we have

∂Xm+p+l((σm,p(zp)(ym))− (−1)l(σm,p−1(∂Zp (zp)))(ym)

− (−1)p+l(σm,p(zp))(∂
Y
m(ym)).

Therefore the diagram commutes as desired. �

7. Day 7

The following theorem can be found in [2, Proposition 1.6.10(b)].

Theorem 7.1. K(x) is self-dual, that is, Σn HomR(K(x), R) ∼= K(x) where x =
x1, · · · , xn.

Proof. We proceed by induction on n. The base case is from Remark 6.1.
Inductive Step: Assume that the theorem holds for the case n−1. The inductive

hypothesis implies the first of the next two isomorphisms

K(x1, · · · , xn−1) ∼= Σn−1 HomR(K(x1, · · · , xn−1), R)

HomR(K(xn), R) ∼= Σ−1K(xn).
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The second isomorphism follows from the base case. These isomorphisms and Hom-
tensor adjointness explain the second step in the next display:

Σn HomR(K(x1, · · · , xn), R) ∼= Σn HomR(K(x1, · · · , xn−1)⊗R K(xn), R)

∼= Σn HomR(Σn−1 HomR(K(x1, · · · , xn−1), R),Σ−1K(xn))

∼= ΣnΣ1−nΣ−1 HomR(HomR(K(x1, · · · , xn−1), R),K(xn))

∼= HomR(HomR(K(x1, · · · , xn−1), R),K(xn))

∼= K(x1, · · · , xn−1)⊗R HomR(R,K(xn))

∼= K(x1, · · · , xn).

The first step is by definition of the Koszul complex and the third step is from
Lemmas 5.3 and 5.4. The fourth step follows from definition of shift and the sixth
step is tensor cancellation together with the definition of the Koszul complex. The
fifth step follows from Hom-evaluation, which is proved in the next theorem. �

Remark 7.2. Let X, Y , and Z be R-modules. The Hom-evaluation homomor-
phism for modules is the map

θXY Z : X ⊗R HomR(Y, Z)→ HomR(HomR(X,Y ), Z)

defined by θXY Z(x ⊗ ψ)(φ) = ψ(φ(x)). This map is an isomorphism when X is
finite and projective or when X is finite and Z is injective; we only need the first
condition, see [7, Lemma 3.55].

The following theorem can be found in [4, (5.6)] with the proof at [4, (5.11)].

Theorem 7.3. Let X, Y , and Z be R-complexes. If Z is a bounded complex of
finitely generated projective R-modules, then there exists an isomorphism of com-
plexes

Z ⊗R HomR(Y,X) ∼= HomR(HomR(Z, Y ), X).

Proof. We need to show that both complexes have the same modules and that the
differentials match up. We will show the first and leave the second for the interested
reader.

Set U = Z ⊗R HomR(Y,X) and W = HomR(HomR(Z, Y ), X). Then in the lth
index of U we have the following modules:

Ul =
∐
p∈Z

Zp ⊗R HomR(Y,X)l−p

=
∐
p∈Z

Zp ⊗R
∏
m∈Z

HomR(Ym, Xm+l−p)

=
∏
p∈Z

Zp ⊗R
∏
m∈Z

HomR(Ym, Xm+l−p)

=
∏

p,m∈Z
Zp ⊗R HomR(Ym, Xm+l−p).
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In the lth index of W we have the following modules:

Wl =
∏
n∈Z

HomR(HomR(Z, Y )n, Xn+l)

=
∏
n∈Z

HomR(
∏
p∈Z

HomR(Zp, Yp+n), Xn+l)

=
∏
n∈Z

HomR(
∐
p∈Z

HomR(Zp, Yp+n), Xn+l)

=
∏
n,p∈Z

HomR(HomR(Zp, Yp+n), Xn+l)

∼=
∏
n,p∈Z

Zp ⊗R HomR(Yp+n, Xn+l).

The third step follows from the fact that Zp is bounded and the last step follows
from Remark 7.2 because Zp consists of finitely generated projective modules. The
modules are the same by setting p+ n = m. �

8. Day 8

The goal for today is to show that (x) Hi(K(x)) = 0 for each i where x =
x1, x2, · · · , xd ∈ R and K(x) is the Koszul complex. First, we need a few lemmas
concerning null-homotopic morphisms; see [4, (1.45)] for defintion.

Lemma 8.1. Let X, Y , and Z be complexes and let α : X → Y be a chain map.
If α ∼ 0, then α⊗R Z ∼ 0.

Proof. It is left to the reader to show that α ⊗R Z is a chain map. Recall that
α⊗RZ : X⊗RZ → Y ⊗RZ can be written as

∐
p+q=iXp⊗RZq →

∐
p+q=i Yp⊗RZq

where in each coordinate we have the map

Xp ⊗R Zq → Yp ⊗R Zq
xp ⊗ zq 7→ α(xp)⊗ zq.

Since α ∼ 0, there exists Si : Xi → Yi+1 with αi = Si−1 ◦ ∂Xi + ∂Yi+1 ◦ Si. Let
ti : (X ⊗R Z)i → (Y ⊗R Z)i+1, otherwise written as ti :

∐
p+=q=iXp ⊗R Zq →∐

p+q=i+1 Yp ⊗R Zq, be defined in each coordinate as follows:

Xp ⊗R Zq → Yp+1 ⊗R Zq
xp ⊗ zq 7→ Sp(xp)⊗ zq.
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To show that ti−1 ◦ ∂X⊗RZ
i + ∂Y⊗RZ

i+1 ◦ ti = (α ⊗R Z)i we have the following com-
putations:

(ti−1 ◦ ∂X⊗RZ
i + ∂Y⊗RZ

i+1 ◦ ti)(xp ⊗ zq)

= ti−1(∂X⊗RZ
i (xp ⊗ zq) + ∂Y⊗RZ

i+1 (ti(xp ⊗ zq)))

= ti−1(∂Xp (xp)⊗ zq + (−1)pxp ⊗ ∂Zq (zq)) + ∂Y⊗RZ
i−1 (Sp(xp)⊗ zq)

= Sp−1(∂Xp (xp))⊗ zq + (−1)pSp(xp)⊗ ∂Zq (zq)

+ ∂Yp+1(Sp(xp))⊗ zq + (−1)p+1Sp(xp)⊗ ∂Zq (zq)

= Sp−1(∂Xp (xp))⊗ zq + ∂Yp+1(Sp(xp))⊗ zq
= [Sp−1(∂Xp (xp)) + ∂Yp+1(Sp(xp))]⊗ zq
= αp(xp)⊗ zq
= (α⊗R Z)i(xp ⊗ zq).

�

Lemma 8.2. Let X and Z be complexes and let µtX : X → X given by x 7→ xt be
a homothety map. Then we have the following equalities

(a) µtX ⊗R Z = µtX⊗RZ
;

(b) HomR(µtX , Z) = µtHomR(X,Z); and

(c) HomR(Z, µtX) = µtHomR(Z,X).

Proof. We will show the proof for part (a) and leave the rest as an exercise for the
reader.

We have the following computation:

(µtX ⊗R Z)i(xp ⊗ zq) = (µtX)p(xp)⊗R zq
= (txp)⊗ zq
= t(xp ⊗ zq)
= µtX⊗RZ(xp ⊗ zq).

�

Lemma 8.3. Let X and Y be complexes and let α : X → Y be a chain map. If
α ∼ 0, then Hi(α) = 0 for all i.

Proof. Since α ∼ 0, we have αi = Si−1 ◦ ∂Xi + ∂Yi+1 ◦ Si. Then Hi(α) : Hi(X) →
Hi(Y ). Let {β} ∈ Hi(X). Then β ∈ Ker(∂Xi ) and this explains the third step in
the following sequence

Hi(α)({β}) = {α(β)}
= {Si−1(∂Xi (β)) + ∂Yi+1(Si(β)}
= {∂Yi+1(Si(β))}
= 0.

The fourth step follows from ∂Yi+1(Si(β)) ∈ Im(∂Yi+1). �

Corollary 8.4. Let X and Y be complexes and let α, α′ : X → Y be chain maps.
If α ∼ α′, then Hi(α) = Hi(α

′) for all i.
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Proof. Since α ∼ α′, we have α − α′ = 0. This implies that Hi(α − α′) = 0 for all
i. Thus Hi(α)−Hi(α

′) = 0. Hence we conclude that Hi(α) = Hi(α
′). �

Lemma 8.5. Let X be a complex and let µtX : X → X be a homothety map. Then
Hi(µ

t
X) = µtHi(x).

Proof. Let {β} ∈ Hi(X). Then we have the following computations:

Hi(µ
t
X)({β}) = {µtX(β)}

= {tβ}
= t{β}
= µtHi(X)({β}).

�

Proposition 8.6. Let x = x1, x2, · · · , xd ∈ R and let K(x) be the Koszul complex.
Then (x) Hi(K(x)) = 0 for each i.

Proof. It suffices to show that x1 Hi(K(x1)⊗R L) = 0. First we show that we have
µx1

K(x1) ∼ 0 by the following diagram

0 // R
x1 //

x1

��

0

��

R //

x1

��

1

��

0

0
0 // R

x1 // R // 0.

Since µx1

K(x1) ∼ 0, Lemma 8.1 implies that µx1

K(x1) ⊗R L ∼ 0. Then by Lemma 8.2

we have µx1

K(x1) ⊗R L = µx1

K(x1)⊗RL
. Thus µx1

K(x1)⊗RL
∼ 0. Lemma 8.3 implies

that Hi(µ
x1

K(x1)⊗RL
) = 0 for all i. Then by Lemma 8.5 we have Hi(µ

x1

K(x1)⊗RL
) =

µx1

Hi(K(x1)⊗RL). Therefore we conclude that x1 Hi(K(x1)⊗R L) = 0. �

9. Day 9

We now discuss depth sensitivity. For definitions pertaining to regular and
weakly regular sequences, see [2, Definition 1.1.1]. The first part of the next theorem
is also proved in [2, Theorem 1.6.16]

Theorem 9.1. Let M be a non-zero R-module and let x = x1, · · · , xd be elements
of R.

(i) If (x) contains a weakly M -regular sequence of length t, then

Hj−d(K(x;M)) = 0

for all j < t.
(ii) If M is finitely generated and xM 6= M , then we have depthR(K(x;M)) =

min{j | Hj−d(K(x;M)) 6= 0}.

Proof. Part (i): Suppose y ∈ (x) is a non-zero divisor on M . Then the following
sequence is exact:

0→M
y−→M →M/yM → 0.

We tensor this with K(x;R) to obtain the exact sequence

0→ K(x;M)
y−→ K(x;M)→ K(x;M/yM)→ 0.
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This yields the following long exact sequence:

· · · → Hj(K(x;M))
y−→ Hj(K(x;M))→ Hj(K(x;M/yM))→ Hj+1(K(x;M))→ ··.

Since y ∈ (x), by Proposition 8.6 we have (x) Hj(K(x;M)) = 0. Thus y = 0 as a
map. Then we have the exact sequence

0→ Hj(K(x;M))→ Hj(K(x;M/yM))→ Hj+1(K(x;M))→ 0.

We proceed by induction on t, the length of the weakly M -regular sequence.
Base case: t = 0. We have the empty sequence and show Hj−d(K(x;M)) = 0.

For j < 0, we have the sequence

0→ K−d → K−d+1 → · · · → K−1 → K0 → 0.

Since j < 0, we have j − d < −d. Thus Kj−d(x;M) = 0. Hence we conclude that
Hj−d(K(x;M)) = 0.

Inductive step. Suppose that y1, · · · , yt−1 ∈ (x) is a weakly M -regular sequence.
Then Hj−d(K(x;M)) = 0 for j < t − 1. Let y1, · · · , yt ∈ (x) be a weakly M -
regular sequence. Then y2, · · · , yt ∈ (x) is a weakly M/y1M -regular sequence. The
inductive hypothesis applied to M/y1M implies that Hj−d(K(x;M/y1M)) = 0 for
j < t− 1. Consider the exact sequence

0→ Hj−1−d(K(x;M))→ Hj−1−d(K(x;M/y1M))→ Hj−d(K(x;M))→ 0.

Since the middle term is zero, we have that Hj−d(K(x;M)) = 0.
Part (ii): Set t = depthR(K(x;M)) and note that since (x)M 6= M , we have that

(x) is an M -regular sequence. By part (i), it suffices to show Ht−d(K(x;M)) 6= 0.
We proceed by induction.

Base case: assume that t = 0. This implies that depthR(K(x,M)) = 0. Thus
the maximal M -regular sequence is the empty sequence. This implies that there are
only zero divisors in (x). Hence (x) ⊆ p for some associated prime p of M . We have
depthR(K(x;M)) = 0 if and only if (x) is contained in ∪p∈AssR(M)p. By the prime
avoidance theorem, there exists a p ∈ AssR(M) such that (x) ⊆ p. By definition
there exists a non-zero element m ∈ M such that (0 : m) = p. In particular,
m(x) = 0.

From the exact sequence

0→M−d


±xd
±xd−1

...
±x1


−−−−−−−→M−d+1 → · · · →M−1 →M → 0

we have m ∈ Ker ∂M−d = H−d(K(x;M)). This implies that

m 7→


±mxd
±mxd−1

...
±mx1

 = 0.

Thus mxi = 0 for i = 1, · · · , d. Since m(x) = 0, we have (0 :M x) = H−d(K(x;M)).
Therefore we have a non-zero element m ∈ H−d(K(x;M)). This implies that
H−d(K(x;M)) 6= 0.
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Inductive step. Assume that t > 1 and that we have depthR(K(x;M)) =
min{j | Hj−d(K(x;M)) 6= 0} for all depthR(K(x;M)) < t. Let y1, · · · , yt be an
M -regular sequence in (x). Note that depthR(K(x;M/y1M)) = t− 1 and consider
the exact sequence

0→ Ht−1−d(K(x;M))→ Ht−1−d(K(x;M/y1M))→ Ht−d(K(x;M)).

Part (i) implies that the first term is zero. Since the second term is non-zero, we
have that the last term of the sequence is non-zero. �

Remark 9.2. Ext is depth sensitive. In the case where IM 6= M and M is

finitely generated, the module Ext
depth(I,M)
R (R/I,M) is non-zero while the modules

Ext0
R(R/I,M),Ext1

R(R/I,M), . . . ,Ext
depth(I,M)−1
R (R/I,M) are all zero.

When x = x1, · · · , xd, the homologies Hd(K(x;M)) and Hd−1(K(x;M)) are
both zero. The first non-zero homology is Hd−depthR(K(x;M))(K(x;M)). For ex-
ample, if for all i > 0, we have Hi(K(x;M)) = 0, then d − depthR(K(x;M)) = 0
implying that d = depthR(K(x;M)). Thus x is M -regular. Hence we conclude
that Hi(K(x;M)) = 0 for all i > 0 if and only if x is M -regular in the case that M
is finitely generated and (x)M 6= M .

10. Day 10

Today we get the motivational speech. We will discuss two nice properties. Al-
though not all of the following requires R to be local, we will impose that condition
nonetheless to simplify things.

Assume (R,m, k) is local and m = (x)R where x = x1, · · · , xn is a minimal
generating sequence for m.

Q: What is so great about Koszul complexes?
A: The Koszul complex is a tool for proving theorems. If we were to be glib, we

could call it ‘applied’ math.

Property 10.1. (a) If X is an R-complex such that Hi(X) is finitely generated
for all i and Hi(X) = 0 for all i� 0, then X is exact if and only if K ⊗R X is
exact. This is a version of “K is faithfully flat”.

(b) If f : X → Y is a chain map over R such that Hi(X) and Hi(Y ) are finitely
generated for all i and Hi(X) = 0 = Hi(Y ) for all i � 0, then f is a quasiiso-
morphism if and only if K⊗R f is a quasiisomorphism. Here we apply part (a)
to Cone(f).

The slogan for the next property is that ‘K is ringy enough to do stuff with’.
The next property concerns DG algebras; see Definition 11.3.

Property 10.2. K is a DG-algebra over R as well as commutative, local, bounded,
and free over R. In practice, this means that K is a good substitute for R/(x) when
x is not R-regular.

The next example shows how useful these two properties are. Some details of
the example are glossed over because of the complexity involved- this should not
detract from the gist of the example, which is, Koszul complexes are extremely
useful.

Example 10.3. How to prove that R has a finite number of semi-dualizing modules
(up to isomorphism classes)?
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Case 1. If R is Cohen-Macaulay, let y = y1, · · · , yd ∈ m be a maximal R-regular

sequence. Let R → R/(y) = R. Then pdR(R) = d < ∞ and R is artinian.

Thus S0(R) ↪→ S0(R) where S0(R) denotes the set of isomorphism classes of
semidualizing R-modules. Therefore it suffices to show that |S0(R)| <∞.

If R contains a field, then using representation theory and work we can show
that |S0(R)| < ∞. The work required in representation theory depends crucially
on the fact that R if of finite length and contains a field.

Case 2. the general case. We use K in place of R.
Step 1. K is a DG-algebra (in the sense that it is a ring that contains a field) over

R. The D stands for differential and the G stands for graded. Define multiplication
on K by

Ki ⊗R Kj
µij−−→ Ki+j

(es1 ∧ · · · ∧ esi)⊗ (et1 ∧ · · · ∧ etj ) 7→ es1 ∧ · · · ∧ esi ∧ et1 ∧ · · · ∧ etj .

Recall that ei ∧ ei = 0 and ei ∧ ej = −ej ∧ ei. Therefore any repetitions cancel and
we can permute the elements at will into ascending order with a −1 raised to the
number of permutations performed.

This is graded commutative, that is, xixj = (−1)ijxjxi. This is associative, and
as distributive as it can be in the sense that we cannot add arbitrary elements. We
cannot add elements of different degrees, but we do have the following ai(bj +cj) =
aibj + aicj . This also adheres to the Leibniz rule, that is

∂(xixj) = ∂(xi)xj + (−1)ixi∂(xj).

Step 2. There exists a DG-algebra homomorphism φ : R→ K defined as follows

0 // R //

id

��

0

0 // Ke
// · · · // K1

// K0
// 0.

This map respects addition, multiplication, and differentials. The map may not be
reversed to go up because that map does not respect differentials.

Step 3. K is finitely generated and free over R. Therefore K is flat. In fact, by
Property 10.1 it is in a sense faithfully flat.

Step 4. If M is an R-module, then K ⊗RM is a DG-module over K. The scalar
multiplication is defined as follows:

Ki ⊗R (K ⊗RM)j → (K ⊗RM)i+j

xi ⊗ (xj ⊗m) 7→ (xixj)⊗m.

This is associative, distributive, and satisfies a version of the Leibniz rule.
Step 5. If M is an R-complex, then K ⊗RM is a DG-module over K.
Step 6. If C is a semidualizing R-module, then K ⊗R C is a semidualizing

DG-module over K.
Step 7. Step 6 implies that we need Ext. That is, we need HomR(−,−) and

resolutions. This is not quite enough, as what we really need is RHomR(−,−), but
because this goes into much depth we will waive our hands a bit at this point. If

for R we have ExtiR(C,C) = 0 for all i 6= 0 and R
∼=−→ HomR(C,C), then for K we

have K
'−→ HomK(P, P ) where P is a semi-projective resolution of K ⊗R C. All
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we really need for R is to show that R
'−→ HomR(P, P ) where P is a projective

resolution of C.
Step 8. We have S0(R) ↪→ S0(K) from the faithfully flat conditions. We

want to show that S0(K) is finite. The homologies Hi(K) are finite dimensional
vector spaces over k. Thus we have K ' F as a DG-algebra where F is a finite
dimensional vector space over k (that is, a finite length ring containing a field) and
F is a DG-algebra. Since a quasiisomorphism of DG-algebras is just as good as an
isomorphism, we have S0(K) ≈ S0(F ).

Next we reprove the representation theory results from Case 1 for the DG setting.
This is nontrivial.

Disadvantage of Koszul complexes: It is very technical stuff.
Advantage of Koszul complexes: It allows us to prove theorems that others

cannot.

11. Day 11

Today we introduce DG algebras. First we provide some background information
and review.

Basic Constructions.

Remark 11.1. (i) All rings are assumed to be commutative.
(ii) Let R be a ring. A complex of R-modules is a sequence

F = · · · → Fn+1

∂F
n+1−−−→ Fn

∂F
n−−→ Fn−1 → · · ·

such that ∂Fn ◦ ∂Fn+1 = 0 for all n ∈ Z.

(iii) The underlying R-module {Fn}n∈Z is denoted F ]. Existing literature may
sometimes use F \. The meaning behind this is that we are removing the
differentials, hence viewing F in the so called ‘nude’.

(iv) We write |x| to denote the degree of an element x. That is, if |x| = n then
x ∈ Fn.

Remark 11.2. Let E, F , and G be complexes of R-modules. Recall:

(i) A degree d homomorphism β : F → G is the collection of R-linear maps
{βn : Fn → Gn+d}n∈Z. All degree d homomorphisms from F to G form an
R-module HomR(F,G)d. This is the degree d component of HomR(F,G) in
which the boundary on β is defined by

∂(β) = ∂G ◦ β − (−1)dβ ◦ ∂F

where |β| = d.
(ii) The tensor product E⊗R F consists of (E⊗R F )n = ⊕i+j=nEi⊗R Fj and the

maps ∂E⊗RF
|e|+|f | (e⊗ f) = ∂E|e|(e)⊗ f + (−1)|e|e⊗ ∂F|f |(f).

DG Algebras, DG modules, and DG homomorphisms. We will work over
a commutative local ring (R,m).

Definition 11.3. A DG algebra is an R-complex (A, ∂A) with 1 ∈ A0 (unit) and
a morphism of complexes called the product

µA : A⊗R A→ A

a⊗ b 7→ ab

with the following properties:
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(i) unitary: 1a = a = a1 for all a ∈ A; and
(ii) asociative: (ab)c = a(bc) for all a, b, c ∈ A.

In addition, we assume that A is commutative if the following hold:

(iii) ab = (−1)|a||b|ba for all a, b ∈ A and a2 = 0 when |a| is odd; and
(iv) Ai = 0 for all i < 0.

Note that the distributive laws are automatic. When parts (iii) and (iv) are not
satisfied, we speak of “associative DG algebras”.

Fact 11.4. For all a ∈ Ai and b ∈ Aj we have the equality

(11.4.1) ∂Ai+j(ab) = ∂Ai (a)b+ (−1)ia∂Aj (b)

called the Leibniz rule. We verify that this is a chain map using the following
commutative diagram:

(A⊗R A)i+j
µi+j //

∂
A⊗RA

i+j

��

Ai+j

∂A
i+j

��
(A⊗R A)i+j−1 µi+j−1

// Ai+j−1.

The computations are as follows:

∂Ai+j(ab) = ∂Ai+j(µi+j(a⊗ b))

= µi+j−1(∂A⊗RA
i+j (a⊗ b))

= µi+j−1(∂Ai (a)⊗ b+ (−1)ia⊗ ∂Aj (b))

= ∂Ai (a)b+ (−1)ia∂Aj (b).

Example 11.5. (i) We regard R as a DG algebra concentrated in degree 0.
(ii) The Koszul complex K = K(a1, · · · , an) where a1, · · · , an ∈ m can be realized

as an exterior algebra and the wedge product endows it with a DG algebra
structure which is commutative with multiplication defined as follows

µ : K ⊗R K → K

a⊗ b 7→ a ∧ b.

Recall that for the wedge product we have ei ∧ ej =


0, if i = j

ei ∧ ej if i < j

−ej ∧ ei if i > j

implying that a ∧ b = (−1)|a||b|b ∧ a.
It remains to verify the Leibnez rule. Let a ∈ Ki and b ∈ Kj . We show

that

∂Ki+j(ab) = ∂Ki (a)b+ (−1)ia∂Kj (b).
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Suppose that a = et1 ∧ · · · ∧ eti and b = ef1
∧ · · · ∧ efj are strictly ascending.

We have the following computations:

LHS = ∂Ki+j((et1 ∧ · · · ∧ eti) ∧ (ef1
∧ · · · ∧ efj ))

=

i∑
l=1

(−1)l+1xtlet1 ∧ · · · ∧ êtl ∧ · · · ∧ eti ∧ ef1
∧ · · · ∧ efj

+

j∑
l=1

(−1)l+i+1xflet1 ∧ · · · ∧ eti ∧ ef1
∧ · · · ∧ êfl ∧ · · · ∧ efj

RHS = (

i∑
l=1

(−1)l+1xtlet1 ∧ · · · ∧ êtl ∧ · · · ∧ eti) ∧ (ef1 ∧ · · · ∧ efj )

+ (−1)i(et1 ∧ · · · ∧ eti) ∧ (

j∑
l=1

(−1)l+1xflef1 ∧ · · · ∧ êfl ∧ · · · ∧ efj ).

We see that the left hand side is equal to the right hand side. If changes to
the order need to be made, the same changes will be made on both sides.

Definition 11.6. A morphism of DG algebras is a morphism of complexes

φ : A→ A′

such that

(i) φ(1) = 1; and
(ii) φ(ab) = φ(a)φ(b) for all a, b ∈ A.

If this is the case, we say that A′ is a DG-algebra over A.

Example 11.7. Let A be a DG algebra. Then the map f : R→ A is a morphism
from R to the DG algebra A. The morphism of complexes is as described below

· · · // 0 //

0

��

0 //

0

��

R //

f

��

0

· · · // A2
// A1

// A0
// 0

with f(1R) = 1A.

12. Day 12

Proposition 12.1. If A and A′ are DG R-algebras, then the tenor product of
complexes A⊗R A′ is a DG R-algebra with the map

µA⊗RA
′

: (A⊗R A′)⊗R (A⊗R A′) −→ A⊗R A′

(a⊗ a′)⊗ (b⊗ b′) 7−→ (−1)|a
′||b|ab⊗ a′b′.

Proof. The unit of A ⊗R A′ is 1 ⊗ 1 where the degree of 1 is zero. To show that
A ⊗R A′ satisfies associativity, let a, b, c ∈ A and a′, b′, c′ ∈ A′. Then we have the
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following computations to show that ((a⊗a′)(b⊗b′))(c⊗c′) = (a⊗a′)((b⊗b′)(c⊗c′)):

((a⊗ a′)(b⊗ b′))(c⊗ c′) = (−1)|a
′||b|(ab⊗ a′b′)(c⊗ c′)

= (−1)|a
′||b|(−1)|a

′b′||c|(ab)c⊗ (a′b′)c′

= (−1)|a
′||b|+|a′||c|+|b′||c|abc⊗ a′b′c′

(a⊗ a′)((b⊗ b′)(c⊗ c′)) = (−1)|b
′||c|(a⊗ a′)(bc⊗ b′c′)

= (−1)|b
′||c|(−1)|a

′|(|b|+|c|)abc⊗ a′b′c′

= (−1)|b
′||c|+|a′||b|+|a′||c|abc⊗ a′b′c′.

Next we show that A⊗RA′ satisfies the Leibniz rule. This is equivalent to showing
that µ is a chain map. Let a ⊗ a′, b ⊗ b′ ∈ A ⊗R A′. We have the following
computations:

∂A⊗RA
′
((a⊗ a′)(b⊗ b′))

= ∂A⊗RA
′
((−1)|a

′||b|ab⊗ a′b′)

= (−1)|a
′||b|∂A⊗RA

′
(ab⊗ a′b′)

= (−1)|a
′||b|
(
∂A(ab)⊗ a′b′ + (−1)|a|+|b|ab⊗ ∂A

′
(a′b′)

)
= (−1)|a

′||b|
(
∂A(a)b⊗ a′b′ + (−1)|a|a∂A(b)⊗ a′b′

+ (−1)|a|+|b|ab⊗ ∂A
′
(a′)b′ + (−1)|a|+|b|+|a

′|ab⊗ a′∂A
′
(b′)
)

where the first step follows from multiplication of tensors. Because the elements a′

and b switch order we must multiply by (−1)|a
′||b|. We pull this term out of the

differential in the second step. In the third step we apply the differential to the
tensor product; see Remark 11.2 (ii) for the map. For the fourth step, we apply the
Leibniz rule using the fact that A and A′ are DG algebras. We now compute the
right hand side of equation eq11.4.1 to complete the proof:

∂A⊗RA
′
(a⊗ a′)(b⊗ b′) + (−1)|a|+|a

′|(a⊗ a′)∂A⊗RA
′
(b⊗ b′)

=
(
∂A(a)⊗ a′ + (−1)|a|a⊗ ∂A

′
(a′)

)
(b⊗ b′)

+ (−1)|a|+|a
′|(a⊗ a′)

(
∂A(b)⊗ b′ + (−1)|b|b⊗ ∂A

′
(b′)
)

= (−1)|a
′||b|∂A(a)b⊗ a′b′ + (−1)|a|+|∂

A′ (a′)||b|ab⊗ ∂A
′
(a′)b′

+ (−1)|a|+|a
′|+|a′||∂A(b)|a∂A(b)⊗ a′b′

+ (−1)|a|+|a
′|+|a′||b|+|b|ab⊗ a′∂A

′
(b′).

The first step follows from applying the differential; see Remark 11.2(ii) for the map,

and the second step follows from multiplication of tensors. Note that |∂A′(a′)| =
|a′| − 1 and |∂A(b)| = |b| − 1. By comparing the left and right hand side, we see
that they are equal. Therefore A⊗R A′ is a DG algebra. �

Remark 12.2. We do have to question the well-definedness of the tensor prod-
uct. The proof is short but not obvious. The following isomorphism is from the
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commutativity of tensor product

(Ai ⊗R A′j)⊗R (Ap ⊗R A′q) ∼= (Ai ⊗R Ap)⊗R (A′j ⊗R A′q).
The definition of the tensor product is a combination of the above isomorphism
with the next two maps

(Ai ⊗R Ap)⊗R (A′j ⊗R A′q)→ Ai+p ⊗R A′j+q ↪→ (A⊗R A′)i+j+p+q.
We need to check that the sign changes of these are the same as in the product.

Remark 12.3. There exists a commutative diagram of DG algebra homomor-
phisms (base change)

R //

��

A

��

a_

��
A′ // A⊗R A′ a⊗ 1

a′ � // 1⊗ a′.
This diagram shows that the algebra structure of the tensor product is very nice
because of the commutativity of the tensor product. We have r(1⊗ 1) = r1⊗ 1 =
1⊗ r1 for any r ∈ R.

Definition 12.4. A DG module M over a DG algebra A (otherwise written as
a DG A-module) is an R-complex with a morphism A ⊗R M → M , defined by
a⊗m 7→ am, that satisfies the following

(i) Leibniz rule: ∂Mi+j(am) = ∂Ai (a)m+ (−1)ia∂Mj (m);
(ii) unitary: there exists 1 ∈M such that am = m = m1 for all m ∈M ; and

(iii) associative: for all a, b, c ∈M we have a(bc) = (ab)c.

Example 12.5. An R-module is a DG R-module. A DG R-module is an R-
complex. Apply the Leibniz rule to an element of R and we always get zero since
R is in degree zero.

Remark 12.6. Let f : M → N be a homomorphism of R-complexes. Then we
have f ∈ HomR(M,N)i and f is of degree i. We write |f | = i.

Definition 12.7. An A-homomorphism of DG modules is a homomorphism of
R-complexes f : M → N such that f(am) = (−1)|f ||a|af(m), that is, f is A-linear.

Remark 12.8. The homomorphism set of two DG A-algebras, HomA(M,N), is
a DG A-module. We leave the proof of this as an exercise for the reader. The
A-module structure is defined for φ ∈ HomA(M,N) and a ∈ A by (aφ)(m) =
(−1)|φ||a|φ(am) = aφ(m). Note that HomA(M,N) ⊆ HomR(M,N).

13. Day 13

Definition 13.1. Let A be a DG R-algebra and let M and N be DG A-modules.
We define M ⊗A N := (M ⊗R N)/L where L is generated by all elements of the
form (am) ⊗ n − (−1)|a||m|m ⊗ (an) where a ∈ A, m ∈ M , and n ∈ N . We check
two things – that M ⊗A N respects the differential and that M ⊗A N is a DG
A-module.
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For the differentials, we have the chain complex

· · · → (M ⊗A N)i
∂
M⊗AN

i−−−−−→ (M ⊗A N)i−1 → · · · .
Let (am) ⊗ n − (−1)|a||m|m ⊗ (an) ∈ (M ⊗A N)i. We show that the differential
maps this element into (M ⊗A N)i−1. We have the following computations

∂M⊗AN ((am)⊗ n− (−1)|a||m|m⊗ (an))

= ∂M⊗AN (am⊗ n)− (−1)|a||m|∂M⊗AN (m⊗ an)

= ∂M (am)⊗ n+ (−1)|a|+|m|am⊗ ∂N (n)

− (−1)|a||m|
(
∂M (m)⊗ an+ (−1)|m|m⊗ ∂N (an)

)
= ∂A(a)m⊗ n+ (−1)|a|a∂M (m)⊗ n

+ (−1)|a|+|m|am⊗ ∂N (n)− (−1)|a||m|∂M (m)⊗ an

− (−1)|a||m|+|m|(m⊗ ∂A(a)n+ (−1)|a|m⊗ a∂N (n))

=
(
∂A(a)m⊗ n− (−1)|a||m|+|m|m⊗ ∂A(a)n

)
+
(
(−1)|a|(a∂M (m)⊗ n− (−1)|a||m|−|a|∂M (m)⊗ an)

)
+
(
(−1)|a|+|m|(am⊗ ∂N (n)− (−1)|a||m|m⊗ a∂N (n))

)
where the third and fourth computations follow from the Leibniz rule sinceM andN
are both DG A-modules. The first and second steps are by definition. Note that for
the signs we have the equalities |a||m|+|m| = |a||m|−|m| = (|a|−1)|m| = |∂A(a)||m|
and in a similar manner |a||m| − |a| = |a||∂M (m)|.

Next we check that M⊗AN is a DG A-module. It suffices to show that M⊗AN
satisfies the Leibniz rule as the other two conditions are straightforward. Let a ∈ Ai,
m ∈Mj , and n ∈ Nk. We show the equality

∂M⊗AN (a(m⊗ n)) = ∂Ai (a)(m⊗ n) + (−1)ia∂M⊗AN
j+k (m⊗ n).

The third step in the following computations follows from the fact that M is a DG
A-algebra:

LHS = ∂M⊗AN
i+j+k ((am)⊗ n)

= ∂Mi+j(am)⊗ n+ (−1)i+jam⊗ ∂Nk (n)

= ∂Ai (a)m⊗ n+ (−1)ia∂Mj (m)⊗ n+ (−1)i+jam⊗ ∂Nk (n)

RHS = ∂Ai (a)(m⊗ n) + (−1)ia∂M⊗AN
j+k (m⊗ n)

= ∂Ai (a)m⊗ n+ (−1)ia(∂Mj (m)⊗ n+ (−1)jm⊗ ∂Nk (n))

= ∂Ai (a)m⊗ n+ (−1)ia∂Mj (m)⊗ n+ (−1)i+jam⊗ ∂Nk (n).

Therefore M ⊗A N is a DG A-algebra.

Next we tackle base change.

Proposition 13.2. Let A → B be a morphism of DG R-algebras. Let M be a
DG A-module. Then B ⊗A M has the structure of a DG B-module by the action
b(b′ ⊗m) = (bb′)⊗m.

Proof. For well-definedness we need to show that if b
∑
i(b
′
i⊗mi) = b

∑
j(b
′′
j ⊗m′j)

then we have
∑
i(bb
′
i)⊗mi =

∑
j(bb

′′
j )⊗m′j . This is shown in Lemma 14.3.
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We next check the Leibniz rule. We show the equality

∂B⊗AM
i+j+k (b(b′ ⊗m)) = ∂Bi (b)(b′ ⊗m) + (−1)ib∂B⊗AM

j+k (b′ ⊗m)

where b is in degree i, b′ is in degree j, and m is in degree k. We have the following
computations:

LHS = ∂B⊗AM
i+j+k (b(b′ ⊗m))

= ∂Bi+j(bb
′)⊗m+ (−1)i+jbb′ ⊗ ∂Mk (m)

RHS = ∂Bi (b)b′ ⊗m+ (−1)ib(∂Bj (b′)⊗m+ (−1)jb′ ⊗ ∂Mk (m))

= ∂Bi (b)b′ ⊗m+ (−1)ib∂Bj (b′)⊗m+ (−1)i+jbb′ ⊗ ∂Mk (m).

The left and right hand side are equal since the Leibniz rule with respect to B
(since B is a DG R-module) implies the equality ∂Bi+j(bb

′) ⊗m = ∂Bi (b)b′ ⊗m +

(−1)ib∂Bj (b′)⊗m. �

Corollary 13.3. If M is an R-complex then K(a)⊗RM is a DG K(a)-module.

Proposition 13.4. If M and N are DG A-modules with A→ B and f : M → N
is a homomorphism of DG A-modules, then the induced map

B ⊗A f : B ⊗AM → B ⊗A N

is a DG B-morphism.

Proof. The well-definedness of this map is treated in Fact 14.2.
We show the equality (B⊗Af)(a(b⊗m)) = (−1)|B⊗Af ||a|a(B⊗Af)(b⊗m) where

a, b ∈ B and m ∈ M . Note that degree wise we have |B ⊗A f | = |f | since |B| = 1
as the identity map. We have the following computations:

LHS = (B ⊗A f)(ab⊗m)

= (−1)|f ||a|+|f ||b|(ab⊗ f(m))

RHS = (−1)|f ||b|((−1)|f ||a|a(b⊗ f(m)))

= (−1)|f ||a|+|f ||b|(ab⊗ f(m)).

�

Corollary 13.5. If M and N are R-complexes, and f : M → N is a chain map,
then the induced map

K(a)⊗R f : K(a)⊗RM → K(a)⊗R N

is a DG K(a)-homomorphism.

14. Day 14

Fact 14.1. Let A be a DG R-algebra and let M and N be DG A-modules. Using
M ⊗AN as defined in Definition 13.1, we check that the action a(m⊗n) := am⊗n
is well-defined. Note that we always have the equality am⊗ n = (−1)|a||m|m⊗ an.

Suppose that
∑
mi ⊗ ni =

∑
m′i ⊗ n′i for some mi ⊗ ni,m′i ⊗ n′i ∈ M ⊗A N .

Consider the multiplication map µa : M →M defined by m 7→ am of degµa = |a|
and the identity map IdN : N → N . By definition we have the equality

a(m⊗ n) = (µa ⊗ IdN )(m⊗ n).
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Until now all our tensors have been over A. Recall from Definition 13.1 that
M ⊗A N = (M ⊗R N)/L. Since

∑
mi ⊗ ni =

∑
m′i ⊗ n′i as a tensor over A, this

implies that
∑
mi⊗ni−

∑
m′i⊗n′i = 0. In other words,

∑
mi⊗ni−

∑
m′i⊗n′i ∈ L

where the tensor is over R. Since L is generated by elements of a particular form,
we can write

∑
mi⊗R ni−

∑
m′i⊗R n′i =

∑
aim

′′
i ⊗R n′′i − (−1)|ai||m

′′
i |m′′i ⊗R ain′′i

for some ai ∈ A and m′′i ⊗ n′′i ∈M ⊗R N .
This implies that we have the following equalities in L

(µa ⊗ IdN )
(∑

mi ⊗R ni −
∑

m′i ⊗R n′i
)

=
∑(

(µa ⊗ IdN )(aim
′′
i ⊗ n′′i )

− (−1)|ai||m
′′
i |(µa ⊗ IdN )(m′′i ⊗ ain′′i )

)
=
∑(

µa(aim
′′
i )⊗ n′′i

− (−1)|ai||m
′′
i |µa(m′′i )⊗ ain′′i

)
=
∑(

(−1)|ai||µ
a|aiµ

a(m′′i )⊗ n′′i
− (−1)|ai||m

′′
i |µa(m′′i )⊗ ain′′i

)
=
∑

(−1)|ai||µ
a|(aiµa(m′′i )⊗ n′′i

− (−1)|ai||µ
a(m′′i )|µa(m′′i )⊗ ain′′i

)
= 0.

This implies that (µa ⊗ IdN )(
∑
mi ⊗ ni) = (µa ⊗ IdN )(

∑
m′i ⊗ n′i) and hence we

conclude that a
∑
mi ⊗ ni = a

∑
m′i ⊗ n′i.

Fact 14.2. Let f : M → M ′ and g : N → N ′ be DG A-homomorphisms of DG
A-modules of degrees t and s respectively. Then f⊗g : M⊗AN →M ′⊗AN ′ given
by (f ⊗ g)(m⊗n) = (−1)|m||g|f(m)⊗ g(n) is a well-defined DG A-homomorphism.

Applying Definition 13.1 we have M ⊗A N = (M ⊗R N)/L and M ′ ⊗A N ′ =
(M ′⊗RN ′)/L′. First we prove that f⊗g is well-defined. Suppose that

∑
mi⊗ni =∑

pi⊗qi for some mi⊗ni, pi⊗qi ∈M⊗AN . Then we have
∑
mi⊗ni−

∑
pi⊗qi =∑

(aim
′′
i ⊗ n′′i − (−1)|ai||m

′′
i |m′′i ⊗ ain′′i ) for some ai ∈ A and m′′i ⊗ n′′i ∈M ⊗R N .
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This implies we have the following equalities in L′:

(f ⊗ g)
(∑

mi ⊗ ni −
∑

pi ⊗ qi
)

= (f ⊗ g)
(∑

aim
′′
i ⊗ n′′i − (−1)|ai||m

′′
i |m′′i ⊗ ain′′i

)
=
∑(

(f ⊗ g)(aim
′′
i ⊗ n′′i )− (−1)|ai||m

′′
i |(f ⊗ g)(m′′i ⊗ ain′′i )

)
=
∑(

(−1)|g||ai|+|g||m
′′
i |f(aim

′′
i )⊗ g(n′′i )

− (−1)|ai||m
′′
i |+|g||m

′′
i |f(m′′i )⊗ g(ain

′′
i )
)

=
∑(

(−1)|g||ai|+|g||m
′′
i |+|ai||f |aif(m′′i )⊗ g(n′′i )

− (−1)|ai||m
′′
i |+|g||m

′′
i |+|ai||g|f(m′′i )⊗ aig(n′′i )

)
=
∑

(−1)|g||ai|+|g||m
′′
i |+|ai||f |

(
aif(m′′i )⊗ g(n′′i )

− (1)|ai||m
′′
i |−|ai||f |f(m′′i )⊗ aig(n′′i )

)
=
∑

(−1)|g||ai|+|g||m
′′
i |+|ai||f |

(
aif(m′′i )⊗ g(n′′i )

− (1)|ai||m
′′
i |+|ai||f |f(m′′i )⊗ aig(n′′i )

)
=
∑

(−1)|g||ai|+|g||m
′′′
i |+|ai||f |

(
aif(m′′i )⊗ g(n′′i )

− (−1)|ai||f(m′′i )|f(m′′i )⊗ aig(n′′i )
)
.

Thus we conclude that (f ⊗ g)(
∑
mi ⊗ ni) = (f ⊗ g)(

∑
pi ⊗ qi) and hence f ⊗ g is

well-defined.
Next we prove that f⊗g is an A-homomorphism. We show (f⊗g)(a(m⊗m′)) =

(−1)|f⊗g||a|a(f ⊗ g)(m ⊗ m′). For the left hand side of the equality we have the
following equalities:

(f ⊗ g)(am⊗m′) = (−1)|g||am|f(am)⊗ g(m′)

= (−1)|g|(|a|+|m|)f(am)⊗ g(m′)

= (−1)|g|(|a|+|m|)+|f ||a|af(m)⊗ g(m′).

The last equality follows from the fact that f is a DG A-homomorphism. For the
right hand side we have the following:

(−1)|f⊗g||a|a(f ⊗ g)(m⊗m′) = (−1)(|f |+|g|)|a|a(−1)|g||m|f(m)⊗ g(m′)

= (−1)|f ||a|+|g||a|+|g||m|af(m)⊗ g(m′).

We conclude that f ⊗ g is an A-homomorphism.

Now we return to the previous result of base change from Proposition 13.2 to
show that the action described is well defined.

Lemma 14.3. Let A → B be a morphism of DG R-algebras. Let M be a DG A-
module. Then the DG B-module B⊗AM defined by the action b(b′⊗m) = (bb′)⊗m
is well-defined.

Proof. Consider the DG A-homomorphisms IdM : M → M and µb : B → B of
degrees 0 and |b| respectively where µb is defined by the map b′ 7→ bb′ for all b′ ∈ B.
Fact 14.2 implies that the map µb ⊗ IdM : B ⊗AM → B ⊗AM is a DG A-module
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homomorphism. We have the equality

(µb ⊗ IdM )(b′ ⊗m) = (bb′)⊗m

so in fact b(b′ ⊗ m) = (µb ⊗ IdM )(b′ ⊗ m) which implies that the action is well-
defined. �

Proposition 14.4. If M and N are DG A-modules and f : M → N is a DG
A-homomorphism and also A→ B is a homomorphism between DG algebras, then
the induced map

B ⊗A f : B ⊗AM → B ⊗A N
is a DG B-homomorphism.

Proof. Proposition 13.2 implies that B ⊗AM and B ⊗A N are DG B-modules so
we only need to check (B ⊗A f)(a(b⊗m)) = (−1)|B⊗f ||a|a(B ⊗A f)(b⊗m) for all
a, b ∈ B and m ∈M . We have the following computations

(B ⊗A f)(ab⊗m) = (−1)|f |(|a|+|b|)ab⊗ f(m)

= (−1)|f ||a|a(−1)|f ||b|b⊗ f(m)

= (−1)|B⊗f ||a|a(B ⊗A f)(b⊗m)

where the first step follows from Fact 14.2 and the second step follows from Propo-
sition 13.2. The third step follows from the fact that |f | = |B ⊗ f |.

�

The next definition is equivalent to to one given in [1, pages 29-30].

Definition 14.5. Let R be a commutative ring with identity. An R-algebra is an
abelian group S which admits mapping S × S → S defined by (a, b) 7→ ab and a
mapping R× S → S defined by (r, a) 7→ ra that satisfy the following conditions:

(1) a(b+ c) = ab+ ac and (a+ b)c = ac+ bc for all a, b, c ∈ S.
(2) r(a+ b) = ra+ rb for all r ∈ R and a, b ∈ S.
(3) r(ab) = (ra)b = a(rb) for all r ∈ R and a, b ∈ S.
(4) (rs)a = r(sa) for all r, s ∈ R and a ∈ S.
(5) 1a = a for all a ∈ S.

Remark 14.6. Note that A0 is an R-algebra. The natural map A0 → A is a
morphism of DG algebras as described below:

· · · // 0

0

��

// A0
//

Id

��

0

· · ·
∂A

2 // A1

∂A
1 // A0

∂A
0 // 0.

The condition A−1 = 0 implies that Ker(∂A0 ) = A0. Hence A0 surjects onto H0(A)
and H0(A) is an A0-algebra.

Furthermore, the R-module Ai is an A0-module and Hi(A) is an H0(A)-module
for each i by the following action: let a + Im(∂A1 ) ∈ H0(A) = A0/ Im(∂A1 ) and
b+ Im(∂Ai+1) ∈ Hi(A) = Ker(∂Ai )/ Im(∂Ai+1). Then we define

(a+ Im(∂A1 ))(b+ Im(∂Ai+1)) := ab+ Im(∂Ai+1).
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This is well-defined since ab ∈ Ker(∂Ai ) as shown below. The first equality of the
following sequence follows from the Leibniz rule:

∂Ai (ab) = ∂A0 (a)b+ (−1)|a|a∂Ai (b) = a∂Ai (b) = 0.

The second equality follows from the fact that a ∈ Ker(∂A0 ) and |a| = 0, and the
third equality follows from the fact that b ∈ Ker(∂Ai ).

Definition 14.7. Let A be a DG algebra. We say A is noetherian if H0(A) is
noetherian and Hi(A) is finitely generated as an H0(A)-module for all i > 0. We
say that H0(A) is a local R-algebra if H0(A) is a local ring whose maximal ideal
contains the ideal mH0(A). We say A is local if it is noetherian and the ring H0(A)
is a local R-algebra.

Proposition 14.8. Let A be a local DG algebra. The composition

A→ H0(A)→ k

where k = A0/m0 for some m0 ( A0 has kernel of the form

mA = · · · ∂
A
2−−→ A1

∂A
1−−→ m0 → 0.

Since H0(A) is a local R-algebra, we have mA0 ⊂ m0.

Proof. From the composition map A→ H0(A)→ k, we have the following diagram:

· · · // A1

∂A
1 //

��

A0
//

����

0

· · · // 0 //

��

A0/ Im(∂A0 ) //

��

0

· · · // 0 // A0/m0
// 0.

Since Im(∂A1 ) ⊆ A0, there exists m0 ∈ max(A0) such that Im(∂A1 ) ⊆ m0. Set
k = A0/m0. The map A0/ Im(∂A1 ) → A0/m0 defined by a + Im(∂1

A) 7→ a + m0 for
any a ∈ A0 is well-defined. It is clear that

Ker(A→ H0(A)→ k) = · · · ∂
A
2−−→ A1

∂A
1−−→ m0 → 0.

Since H0(A) is a local R-algebra, mH0(A) = m(A0/ Im(∂A1 )) ⊆ m0/ Im(∂A1 ).
Because Im(∂A1 ) ⊆ m0, we have that mA0 ⊆ m0. �

Definition 14.9. Given a local DG R-algebra A, the sub-complex mA is called the
augmentation ideal of A.

15. Day 15

Proposition 15.1. Let A→ B be a DG homomorphism of DG R-algebras and let
M and N be DG A-modules. Then the map

B ⊗A HomA(M,N)
ξ−→ HomB(B ⊗AM,B ⊗A N)

defined by ξ(b⊗ f)(b′ ⊗m) = (−1)|b
′||f |bb′ ⊗ f(m) is a DG homomorphism.
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Proof. We need to show the map is well-defined, ξ is a DG homomorphism, and ξ
is a chain homomorphism.

First we check well-definedness. Let
∑
bi⊗fi =

∑
ci⊗gi in B⊗AHomA(M,N).

Then we have
∑
bi ⊗ fi −

∑
ci ⊗ gi =

∑(
aidi ⊗ hi − (−1)|ai||di|di ⊗ aihi

)
for some

ai ∈ A and di ⊗ hi ∈ B ⊗A HomA(M,N) by Definition 13.1. Then we have the
following computations:

ξ
(∑(

aidi ⊗ hi − (−1)|ai||di|di ⊗ aihi
))

(b′ ⊗m′)

=
∑(

ξ(aidi ⊗ hi)(b′ ⊗m′)− (−1)|ai||di|ξ(di ⊗ aihi)(b′ ⊗m′)
)

=
∑(

(−1)|hi||b′|aidib
′ ⊗ hi(m′)− (−1)|ai||di|+|ai||b

′|+|hi||b′|dib
′ ⊗ (aihi)(m

′)
)

=
∑

(−1)|hi||b′|
(
ai(dib

′)⊗ hi(m′)− (−1)|dib
′||ai|dib

′ ⊗ aihi(m′)
)

= 0.

Therefore we conclude that ξ(
∑
bi⊗fi) = ξ(

∑
ci⊗gi) and the map is well-defined.

Although we do not show that the map is independent of b′⊗m′, this follows from
last time.

Next we show that ξ is a DG homomorphism. The proof to show that ξ is an DG
A-homomorphism is similar to the proof to show that ξ is a DG B-homomorphism.
We show that ξ is a DG A-homomorphism and leave the other case to the reader.

We show that ξ(a(b ⊗ f)) = (−1)|ξ||a|aξ(b ⊗ f). Since deg ξ = 0, we have
(−1)|ξ||a| = 1. We have the following computations

ξ(a(b⊗ f))(b′ ⊗m′) = ξ(ab⊗ f)(b′ ⊗m′)

= (−1)|f ||b
′|abb′ ⊗ f(m′)

= a(−1)|f ||b
′|bb′ ⊗ f(m′)

= a(ξ(b⊗ f)(b′ ⊗m′))
= (aξ(b⊗ f))(b′ ⊗m′)

= (−1)|ξ||a|aξ(b⊗ f)(b′ ⊗m′).

Therefore ξ is a DG A-homomorphism. Note that to be a DG B-homomorphism is
stronger than to be a DG A-homomorphism.

Next we show that ξ is a chain homomorphism. Let λMA : A → HomA(M,M)
be defined by λMA (a)(m) = am. We show that this is a homomorphism of DG A-
modules. Keep in mind that |λMA | = 0 and a, b ∈ A are of different degrees. We have
λMA (ab)(m) = abm = aλMA (b)(m) and we do not need parenthesis in the middle step
because of the associative property. We have the following commutative diagram:

(B ⊗A HomA(M,N))i
ξi //

∂
B⊗AHomA(M,N)

i

��

(HomB(B ⊗AM,B ⊗A N))i

∂
HomB(B⊗AM,B⊗AN)

i

��
(B ⊗A HomA(M,N))i−1

ξi−1 // (HomB(B ⊗AM,B ⊗A N))i−1.
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It is enough to consider a generator b ⊗ f ∈ (B ⊗A HomA(M,N))i. We have the
following computations:

(ξi−1∂
B⊗AHomA(M,N)
i (b⊗ f))(b′ ⊗m)

= ξi−1(∂Bi (b)⊗ f + (−1)|b|b⊗ ∂HomA(M,N)
i (f))(b′ ⊗m)

= (−1)|f ||b
′|∂Bi (b)b′ ⊗ f(m) + (−1)|b|+(|f |−1)|b′|bb′ ⊗ ∂HomA(M,N)

i (f)(m).

For the other direction around the square we begin with

∂
HomB(B⊗AM,B⊗AN)
i (ξi(b⊗ f))(b′ ⊗m).

The details are left to the reader. �

16. Day 16

Example 16.1. Consider the Koszul complex K(x, y, z). We have the following
diagram:

0→ R
∂3−→ R3 ∂2−→ R3 ∂1−→ R→ 0.

In degree three we have the element e1∧e2∧e3, in degree two we have the elements
e1 ∧ e2, e1 ∧ e3, and e2 ∧ e3, in degree one we have the elements e1, e2, and e3, and
in degree zero we have the element 1.

We have the following computation:

∂3(e1 ∧ e2 ∧ e3) = xe2 ∧ e3 − ye1 ∧ e3 + ze1 ∧ e2.

This implies that ∂3 =

 z
−y
x

. In a similar manner we find that ∂1 =
(
x y z

)
.

We have the following computations:

∂3(e1 ∧ e2 ∧ e3) = ∂3(e1(e2 ∧ e3))

= ∂1(e1)e2 ∧ e3 + (−1)|e1|e1∂2(e2 ∧ e3)

= xe2 ∧ e3 − (e1(ye3 − ze2))

= xe2 ∧ e3 − ye1 ∧ e3 + ze1 ∧ e2

We would like to do homological algebra in this setting with ExtA and TorA. If
M is a DG A-module, we can use ExtA and TorA since we know that a resolution
of M is an R-complex. Our next step is to understand the resolution of a complex
in order to use ExtA and TorA with respect to complexes.

Remark 16.2. Let T be an R-module. Then a free resolution of T will look like
the following:

F = · · · ∂
F
2−−→ F1

∂F
1−−→ F0 → 0

where Fi is a free modules for each i. The augmented resolution is as follows:

F+ = · · · ∂
F
2−−→ F1

∂F
1−−→ F0

τ−→ T → 0.
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Then the map F
'−→ T is given by

· · ·
∂F

2 // F1

∂F
1 //

��

F0
//

τ

��

0

· · · // 0 // T // 0.

This is a good perspective from which to define a free resolution of an R-complex.

Definition 16.3. If U is an R-complex, then a free resolution of U over R is a

quasiisomorphism G
'−→ U where G is a complex of free R-modules such that Gi = 0

for all i� 0.

Fact 16.4. The R-complex U has a free resolution if and only if Hi(U) = 0 for all
i� 0.

17. Day (April 13th)

Definition 17.1. Let A = · · · ∂A
2−−→ A1

∂A
1−−→ A0 → 0 be a commutative DG R-

algebra where R is a commutative noetherian ring. Let M = · · ·
∂M
i+2−−−→ Mi+1

∂M
i+1−−−→

Mi
∂M
i−−→ · · · be a DG A-module.

Then A\ = · · · 0−→ A2
0−→ A1

0−→ A0 → 0 is a DG R-algebra (strip away the

differential) and M \ = · · · 0−→ Mi+1
0−→ Mi

0−→ Mi−1
0−→ · · · , called M natural, is a

DG A\-module.
A basis for M \ is a subset E ⊆M \ (or a set of subsets Ei ⊆Mi where i ∈ Z) such

that every element mi ∈ Mi has a unique decomposition as a linear combination

over A\ in E. For all mi ∈ Mi there exists a unique mi =
∑finite
e∈E aee such that

ae ∈ A\.
A semibasis for M is a set E ⊆ M such that E is a basis for M \ over A\. We

say M is semifree over A if it is bounded below and has a semibasis.

Example 17.2. A semifree DG R-module is a bounded below complex of free
R-modules.

Example 17.3. If the semibasis for M has two elements e01 and e02 in degree 0
and three elements e11, e12, and e13 in degree 1 then we have the following:

degree · · · 4 3 2 1 0

M : · · ·
A2

4

⊕
A3

3

//
A2

3

⊕
A3

2

//
A2

2

⊕
A3

1

//
A2

1

⊕
A3

0

// A2
0

// 0.

The maps between the modules are homomorphisms; it is difficult to say more
unless we are working with a specific A. For example, we have

A2
3

⊕
A3

2

α3 γ2

β3 δ2


−−−−−−−−→

A2
2

⊕
A3

1
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where

α3 : A2
3 → A2

2

β3 : A2
3 → A3

1

γ2 : A3
2 → A2

2

δ2 : A3
2 → A3

1.

Example 17.4. Let K(x) be a Koszul complex and

A = K(x) = 0 // K1
//

∼=
��

K0
//

∼=
��

0

R R

with basis elements e ∈ K1 and 1 ∈ K0, and where ∂K1 (e) = x. Let e01 and e02

in degree zero and e11, e12, and e13 in degree one be a semibasis for M . Then we
have the following:

M = 0 //
0
⊕
K3

1

α
β


//
K2

1

⊕
K3

0

(
γ δ

)
//
K2

0

⊕
0

// 0

with basis elements

ee11, ee12, ee13 ∈ K3
1

ee01, ee02 ∈ K2
1

e11, e12, e13 ∈ K3
0

e01, e02 ∈ K2
0 .

The fact that M must satisfy the Leibniz rule for differentials explains the second
step in the following display:

eα(e1j) + β(e1j) = ∂M2 (ee1j) = ∂K1 (e)e1j + (−1)|e|e∂M1 (e1j) = xe1j − eδ(e1j).

The third step follows from the fact that |e| = 1 and the equality ∂M1 (e1j) = δ(e1j).
Hence we have that (

α(e1j)
β(e1j)

)
=

(
−δ(e1j)
xe1j

)
implying that α = −δ and β is multiplication by x. For the Leibniz rule in degree
one we have the following:

γ(e0j) = ∂M1 (ee0j) = ∂K1 (e)e0j + (−1)|e|e∂M0 (e0j) = xe0j .

We conclude that γ = x, that is, the map γ is defined by multiplication with the
element x.

Proposition 17.5. If M is a semifree DG R-module then A ⊗R M is a semifree
DG A-module.

Proof. Recall that (A⊗RM)i = ⊕p∈Z(Ap⊗RMi−p) with a DG A-module structure
such that

aj(ap ⊗mi−p) := (ajap)⊗mi−p
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where the element aj is in degree j, the element ap⊗mi−p is in degree i, the element
ajap is in degree j + p, and the element mi−p is in degree i− p.

For the semibasis, let eq ∈ Eq ⊆ Mq. Then 1 ⊗ eq ∈ A0 ⊗R Mq ⊆ (A ⊗R M)q.

Let Ẽ = {1⊗ eq|eq ∈ Eq, q ∈ Z}. Then Ẽ forms a semibasis.
Let η ∈ (A⊗RM)i. Then η = {ηp}p∈Z where ηp ∈ Ap⊗RMi−p for all p ∈ Z. We

need to show that ηp ∈ Ap⊗RMi−p can be written uniquely as a linear combination
of elements of the form 1⊗ eq with coefficients in A.

By assumption, Mi−p is a free R-module implying that we have Mi−p ∼= R(Λi−p)

for some set Λi−p. Then Ap⊗RMi−p ∼= Ap⊗RR(Λi−p) ∼= (Ap)
(Λi−p) where elements

of the form ap ⊗ ei−p ∈ Ap ⊗R R(Λi−p) can be written as apei−p ∈ (Ap)
(Λi−p). In

particular, ap⊗ei−p = ap(1⊗ei−p) ∈ Ẽ. Therefore the elements in (Ap)
(Λi−p) have

a unique expression. Thus ηp has a unique expression as a finite sum of things of the

form apei−p ∈ (Ap)
(Λi−p), that is, it has a unique expression as a linear combination

with coefficients in A. (This is because Ai = 0 for all i < 0 and Mi = 0 for i � 0
hence (A⊗RM)i = 0 for all i� 0.) �

Definition 17.6. If M is a DG A-module, a semifree resolution of M over A is

a quasiisomorphism (in the category of DG A-module homomorphisms) F
'−→ M

such that F is a semifree DG A-module.

Fact 17.7. If M has a semifree resolution, then Hi(M) = 0 for all i � 0 because
Fi = 0 for all i� 0. The converse holds but is difficult to prove.

Lemma 17.8. Let F be a bounded below complex of flat R-modules. Then the
following hold:

(a) If X is an exact complex of R-modules, then F ⊗R X is exact.
(b) If φ : Y → Z is a quasiisomorphism over R, then F ⊗R φ : F ⊗R Y → F ⊗R Z

is a quasiisomorphism.

Proof. We will only sketch the proof here and leave the details to the reader. For
part (a), reduce to cases.

Case 1. F is bounded. In this case, there are integers a and b such that a 6 b
and Fi = 0 for all i < a and all i > b. In this case, we argue by induction on
n = b− a. For convenience, we say that F is “concentrated in a degree-interval of
length 6 n”.

Base case: n = 0. In this case, F is a flat module Fa concentrated in degree a,
so the desired conclusion holds by the flatness of Fa.

Induction step. Assume that n > 1 and that the result holds for bounded
complexes of flat modules that concentrated in a degree-interval of length 6 n− 1.
By assumption, we have

F = 0→ Fb
∂F
b−−→ · · ·

∂F
a+1−−−→ Fa → 0.

Consider the following complex obtained by “truncating” F :

F = 0→ Fb
∂F
b−−→ · · ·

∂F
a+2−−−→ Fa+1 → 0.

This complex fits into a short exact sequence of chain maps

(17.8.1) 0→ ΣaFa → F → F ′ → 0.

Here ΣaFa is the module Fa concentrated in degree a. The base case implies that
ΣaFa ⊗R X is exact, and the induction hypothesis implies that F ′ ⊗R X is exact.



48 KOSZUL COMPLEXES

Use the long exact sequence associated to the sequence (17.8.1) to conclude that
F ⊗R X is exact.

Case 2. The general case. Since F is bounded below, there is an integer c such
that Fi = 0 for all i < c. We need to show that Hi(F ⊗R X) = 0 for all i. Let
i ∈ Z be given. Show that there is an integer j (depending on c and i) such that
the complex

F ′′ = 0→ Fj
∂F
j−−→ · · ·

∂F
c+1−−−→ Fa → 0

satisfies the following conditions: (F ′′ ⊗RX)m = (F ⊗RX)m for m = i− 1, i, i+ 1

and ∂F
′′⊗RX

m = ∂F⊗RX
m for m = i, i+ 1. (In other words, the complexes F ′′ ⊗R X

and F ⊗RX are the same in degrees i− 1, i, and i+ 1.) This explains the first step
in the next display

Hi(F ⊗R X) ∼= Hi(F
′′ ⊗R X) = 0

while the second step follows from Case 1 since F ′′ is a bounded complex of flat
R-modules.

For part (b), apply part (a) to the mapping cone. �

Proposition 17.9. If Ai is flat over R for all i and F
'−→M is a semifree resolution

over R, then A⊗R F
'−→ A⊗RM is a semifree resolution over A.

Proof. We will only sketch the proof here and leave the details to the reader.
Lemma 17.8(b) implies that the quasiisomorphism is respected. By Proposition 13.4
DGR-module homomorphisms tensor up to DGA-module homomorphisms. Propo-
sition 17.5 implies that A⊗R F is semifree over A. �

Corollary 17.10. If x = x1, · · · , xn ∈ R and F
'−→M is a semifree DG R-module

resolution, then K ⊗R F
'−→ K ⊗RM is a semifree DG K-module resolution where

K = K(x).

Proof. This follows from the fact that Ki
∼= R(n

i) is flat over R. �

18. Day (April 20th)

Definition 18.1. Let A be a DG R-algebra and let M be a DG A-module. Let
n ∈ Z. Then we define the shift of a DG A-module M by (ΣnM)i = Mi−n and
the differential ∂Σ

nM
i = (−1)n∂Mi−n. If ai ∈ Ai and m ∈ (ΣnM)p = Mp−n, then we

define the star operation to be

ai ∗m := (−1)inaim ∈ (ΣnM)i+p = Mi+p−n.

Lemma 18.2. Let A be a DG R-algebra and let M be a DG A-module. Then ΣnM
is a DG A-module.

Proof. We show that the Leibniz rule is satisfied and leave the other details to the
reader.

Let ai ∈ Ai and m ∈ (ΣnM)p. Then we have the following:

∂Σ
nM

i+p (ai ∗m) = ∂Σ
nM

i+p ((−1)inaim)

= (−1)n∂Mi+p−n((−1)inaim)

= (−1)n+in
(
∂Ai (ai)m+ (−1)iai∂

M
p−n(m)

)
∂Ai (ai) ∗m+ (−1)iai ∗ ∂Σ

nM
p (m) = (−1)(i−1)n∂Ai (ai)m+ (−1)i+nai ∗ ∂Mp−n(m)

= (−1)in−n∂Ai (ai)m+ (−1)i+n(−1)inai∂
M
p−n(m).
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Since in − n ≡ in + n (mod 2) and n + in + i ≡ i + n + in (mod 2), we conclude
the the Leibniz rule is satisfied. �

Definition 18.3. Let A be a DG R-algebra and let M and N be DG A-modules.
Let α : M → N be a morphism of DG A-modules. Then Σnα : ΣnM → ΣnN
is defined by (Σnα)p(m) := αp−n(m). Note that there is no sign change since the
degree of α is zero (implying that the sign is trivial).

The proof of the next lemma is left as an exercise for the reader.

Lemma 18.4. Σnα is a morphism, that is, it is A-linear.

Definition 18.5. Let A be a DG R-algebra and let M and N be DG A-modules.
Let α : M → N be a morphism of DG A-modules. Then we define

Cone(α)i =
Ni
⊕

Mi−1

and ∂
Cone(α)
i =

(
∂Ni αi−1

0 −∂Mi−1

)
.

Fix ai ∈ Ai. Let nj ∈ Nj and let mj−1 ∈Mj−1. Then we define

ai

(
nj
mj−1

)
:=

(
ainj

(−1)iaimj−1

)
.

Lemma 18.6. Let A be a DG R-algebra, let M and N be DG A-modules, and let
α : M → N be a morphism of DG A-modules. Then Cone(α) is a DG A-module.

Proof. We will check the Leibniz rule and leave the other details as an exercise for
the reader.

Fix ai ∈ Ai. Let nj ∈ Nj and mj−1 ∈Mj−1. Then we have the following:

∂
Cone(α)
i+j

(
ai

(
nj
mj−1

))
= ∂

Cone(α)
i+j

(
ainj

(−1)iaimj−1

)
=

(
∂Ni+j(ainj) + αi+j−1((−1)iaimj−1)

−∂Mi+j−1((−1)iaimj−1)

)
=

(
∂Ai (ai)nj + (−1)iai∂

N
j (nj) + (−1)iaiαj−1(mj−1)

(−1)i+1
(
∂Ai (ai)mj−1 + (−1)iai∂

M
j−1(mj−1)

) )
∂Ai (ai)

(
nj
mj−1

)
+ (−1)iai∂

Cone(α)
j

(
nj
mj−1

)
=

(
∂Ai (ai)nj

(−1)i−1∂Ai (ai)mj−1

)
+ (−1)iai

(
∂Nj (nj) + αj−1(mj−1)
−∂Mj−1(mj−1)

)
=

(
∂Ai (ai)nj + (−1)iai∂

N
j (nj)( − 1)iaiαj−1(mj−1)

(−1)i−1∂Ai (ai)mj−1 − (−1)2iai∂
M
j−1(mj−1)

)
.

Since i + 1 ≡ i − 1 (mod 2) and i + 1 + i ≡ 2i + 1 (mod 2), we conclude that the
Leibniz rule holds. �

Lemma 18.7. Let A be a DG R-algebra, let M and N be DG A-modules, and let
α : M → N be a morphism over A. Then there exist morphisms of DG A-modules
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ε and τ such that

ε : N → Cone(α)

n 7→
(
n
0

)
τ : Cone(α)→ ΣM(

n
m

)
7→ m

and the sequence 0→ N
ε−→ Cone(α)

τ−→ ΣM → 0 is exact.

Proof. We check that the maps ε and τ respect the A-module actions. Let a ∈ A
and n ∈ N . Then we have the following computations:

ε(an) =

(
an
0

)
aε(n) = a

(
n
0

)
=

(
an
±a0

)
.

Let m ∈M . Then we have the following computations:

τ(a

(
n
m

)
) = τ

(
an

(−1)|a|am

)
= (−1)|a|am

aτ

(
n
m

)
= a ∗m = (−1)|a|am.

�

19. Day (April 27th)

Let A be a DG R-algebra where R is a commutative noetherian ring. We start
by describing the module structure of the following:

Let A = · · · ∂A
2−−→ A1

∂A
1−−→ A0 → 0 be a commutative DG R-algebra where R

is a commutative noetherian ring. Let n ∈ Z, and let Λ be a set. Then A(Λ) =∐
λ∈ΛAeλ is a semifree DG A-module with basis E = {eλ|λ ∈ Λ}. The shift of A(Λ)

is defined to be ΣnA(Λ) = Σn
∐
λ∈ΛA ∗ eλ. If eλ ∈ (ΣnA(Λ))n and ai ∈ (A)i (that

is, in degree i), then ai ∗ eλ = (−1)inaieλ. An arbitrary element in
∐
λ∈ΛA ∗ eλ is

a finite sum. If aλ ∈ (A)j for all λ and all ai ∈ Ai, then ai ∗ (
∑finite
λ∈Λ aλ ∗ eλ) =∑finite

λ∈Λ ai ∗ (aλ ∗ eλ) =
∑finite
λ∈Λ (aiaλ) ∗ eλ, that is, the associative law holds. The

differential satisfies the Leibniz rule and we have ∂Σ
nA(Λ)

j+n (aλ ∗ eλ) = ∂Aj (aλ) ∗ eλ +

(−1)jaλ ∗ ∂Σ
nA(Λ)

n (eλ) = ∂Aj (aλ) ∗ eλ.

Lemma 19.1. Let n ∈ Z, and let Λ be a set. Let L be a DG A-module and
X = {xλ ∈ Ln|λ ∈ Λ} ⊆ Ker(∂Ln ) ⊆ Ln. Then there exists a DG A-module
morphism (that is, a degree zero homomorphism)

φ : ΣnA(Λ) → L

where the basis elements eλ 7→ xλ for all λ ∈ Λ and in general the map is defined

by
∑finite
λ∈Λ aλ ∗ eλ 7→

∑finite
λ∈Λ aλxλ.
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Proof. The map φ is well defined since the representations are unique, that is,
E = {eλ|λ ∈ Λ} is a semibasis and this module is semifree; the details are left as
an exercise for the reader.

We show that the necessary diagrams commute and have the necessary structure

for the elements aλ ∗eλ. The case for the general elements
∑finite
λ∈Λ aλ ∗eλ is similar.

To show that the diagram

(
ΣNA(Λ)

)
j+n

∂ΣnA(Λ)

j+n //

φj+n

��

(
ΣnA(Λ)

)
j+n−1

φj+n−1

��
Lj+n

∂L
j+n // Lj+n−1

commutes, we have the following computations:

∂Lj+n(φj+n(aλ ∗ eλ)) = ∂Lj+n(aλxλ)

= ∂Aj (aλ)xλ + (−1)jaλ∂
L
n (xλ)

= ∂Aj (aλ)xλ

φj+n−1(∂Σ
nA(Λ)

j+n (aλ ∗ eλ)) = φj+n−1(∂Aj (aλ) ∗ eλ)

= ∂Aj (aλ)xλ.

Thus the diagram commutes. To show that φ is A-linear, we have the following
computations:

φi+j+n(ai ∗ (aλ ∗ eλ)) = φi+j+n((aiaλ) ∗ eλ)

= (aiaλ)xλ

= ai(aλxλ)

= aiφj+n(aλ ∗ eλ).

Therefore φ is A-linear. �

The above Lemma is a primitive version of mapping a free module onto a module.

Lemma 19.2. Let α : L → M be a morphism of DG A-modules, and let n ∈ Z.
Then we have the following:

(a) There exist morphisms β : ΣnA(Y ) → L and γ : Cone(β) → M such that the
diagram

L
α //

ε

��

M

Cone(β)

γ

::

commutes, Hn(γ) is injective, and αi ∼= γi for all i < n. That is, for each i, we
have the diagram

Li
αi //

εi ∼=
��

Mi

Cone(β)i

γi

::

where εi is an isomorphism and hence αi ∼= γi;
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(b) If Hn(α) is onto, then β and γ can be chosen such that Hn(γ) is an isomor-
phism; and

(c) If Ker(Hn(α)) is finitely generated over H0(A), then β can be chosen such that
Y is finite.

Proof. We prove parts (a) and (b) together. Part (c) follows from the proof of
part (a). Since Hn(α) : Hn(L) → Hn(M), we have that Ker(Hn(α)) ⊆ Hn(L) =
Ker(∂Ln )/ Im(∂Ln+1). Choose Y ⊆ Ker(∂Ln ) such that the set {y ∈ Hn(L)|y ∈ Y } is
a generating set for Ker(Hn(α)) over H0(A). Then Lemma 19.1 implies that there
exists a morphism of DG A-modules β : ΣnA(Y ) → L defined on its basis elements

by ey 7→ y and in general by
∑finite
y∈Y ay ∗ ey 7→

∑finite
y∈Y ayy. If y ∈ Ker(Hn(α)),

then we have αn(y) = Hn(α)(y) = 0 where αn(y) ∈ Hn(M) = Ker(∂Mn )/ Im(∂Mn+1).

This implies that αn(y) ∈ Im(∂Mn+1), say αn(y) = ∂Mn+1(my) where my ∈Mn+1.
Define the map γ : Cone(β) → M by γp : Cone(β)p → Mp where Cone(β)p =

Lp ⊕ (ΣnA(Y ))p−1. Recall that

ai

(
lp

aλ ∗ eλ

)
=

(
ailp

(−1)iai ∗ (aλ ∗ eλ)

)
.

We define the map γp by

γp

(
lp∑finite

y∈Y ay ∗ ey

)
= αp(lp) + (−1)p−n−1

finite∑
y∈Y

aymy

where the element ay is in degree p− n− 1, the element ey is in degree n, and the
element my is in degree n+ 1. It is left as an exercise for the reader to check that
γ is a morphism of DG A-modules.

Then we have the following commutative diagram:

Lp
αp //

εp

��

Mp

Cone(β)p

γp

::

and for lp ∈ Lp we have γp(εp(lp)) = γp(

(
lp
0

)
) = αp(lp).

We have the short exact sequence

0→ L→ Cone(β)→ Σn+1A(Y ) → 0.

Part of the long exact sequence associated to the short exact sequence above is

· · · → Hn+1(Σn+1A(Y ))
∆n+1−−−→ Hn(L)

Hn(ε)−−−−→ Hn(Cone(β))→ Hn(Σn+1A(Y ))→ · · .
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Since Hn(Σn+1A(Y )) = 0, we can rewrite the sequence as

· · · // Hn+1(Σn+1A(Y ))
∆n+1 //

∼=
��

Hn(L)
Hn(ε) //

Hn(α)

��

Hn(Cone(β))

Hn(γ)xx

// 0

H0(A(Y ))

∼=
��

Hn(M)

H0(A)(Y ).

Then ∆n+1 maps onto Ker(Hn(α)). Since Hn(ε) is onto, a diagram chase shows
that Hn(γ) is injective. Also, if Hn(α) is onto, then a diagram chase shows that
Hn(γ) is onto.

For i < n, we have

0 = Hi+1(Σn+1A(Y )) // Hi(L)
∼= //

Hi(α)

��

Hi(Cone(β)) //

Hi(γ)xx

Hi(Σ
n+1A(Y )) = 0

Hi(M)

where the isomorphism is a consequence of the exactness of the sequence. Therefore
Hi(γ) = Hi(α). That is, if Hi(α) is an isomorphism for all i < n, then so is
Hi(γ). �

20. Day May 4th

For this section let A and B be DG R-algebras where R is a commutative local
noetherian ring.

Lemma 20.1. Let M be a DG A-module, n ∈ Z, and X ∈ Ker(∂Mn ). Then there
exists a morphism of DG A-modules

φ : ΣnA(X) →M

defined by
∑finite
x∈X axex 7→

∑finite
x∈X axx where ex denotes the basis elements. Further-

more, Hn(φ) : Hn(ΣnA(X)) → Hn(M) and Im(Hn(φ)) is a submodule of Hn(M)
generated over H0(A) by X ⊆ Hn(M).

Proof. This follows from the equalities

Hn(φ)(

finite∑
x∈X

axex) =

finite∑
x∈X

axex =

finite∑
x∈X

axx.

�

Proposition 20.2. Let M be a DG A-module. Then we have the following:

(a) There exists a morphism of DG A-modules

α :
∐
n∈Z

ΣnA(Xn) →M

such that Hm(α) is onto for all m;
(b) If Hm(M) = 0 for all m < u, then α can be chosen such that Xm = ∅ for all

m < u; and
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(c) If Hm(M) is finitely generated over H0(A) for all m, then α can be chosen such
that Xm is finite for all m.

Proof. We have α =
∐
n∈Z φn :

∐
n∈Z Σ

nA(Xn) → M where Xm ⊆ Ker(∂Mm ) is
the generating set for Hm(M) over H0(A). The details of this proof are left as an
exercise for the reader. �

Theorem 20.3. Let M be a DG B-module such that Hi(M) = 0 for all i < u.
Then we have the following:

(a) M has a semifree resolution over A of β : F
'−→ M such that Fi = 0 for all

i < u; and
(b) If H0(A) is noetherian and for all i and the modules Hi(A) and Hi(M) are

finitely generated over H0(A), then there exists a semifree resolution F
'−→ M

such that Fi = 0 for all i < u and a semibasis E ⊆ F that satisfies |E∩Fi| <∞
for all i.

Proof. We show the proof for part (a) and note that part (b) follows from a similar
argument.

Let α :
∐
n∈Z Σ

nA(Xn) → M such that Hm(α) is onto for all m. Proposi-
tion 20.2(b) implies that we can write α as the following

α :
∐

n∈Z,n>u
ΣnA(Xn) →M.

We claim that for all n ∈ Z there exist morphisms α(n) : L(n) →M and ε(n−1) :
L(n−1) → L(n) such that:

(1) L(n) is semifree for all n;
(2) Hi(α

(n)) : Hi(L
(n))→ Hi(M) is an isomorphism for all i 6 n;

(3) The following diagram commutes

L(n−1) α
(n−1)
//

ε(n−1)

��

M

L(n);

α(n)

<<

(4) ε
(n)
i is injective for all i and all n; and

(5) ε
(n−1)
i is an isomorphism for all i < n.

A note about the notation here: the subscripts indicate the degree of the map or
module and the superscripts in parenthesis denote the nth step of the claim.

For all n < u, set α(n) = α, set ε(n−1) = idL and set L = L(n) =
∐
n>u Σ

nA(Xn).
We proceed by induction on n. Since u is fixed, our base case is n < u. The
inductive step follows from Lemma 19.2(b) with α(n) = γ, L(n) = Cone(β), and
ε(n−1) = ε.

We wave our arms at the finitely generated part, noetherianness is crucial here
since this implies that the kernels of the maps are finitely generated (submodules
of finitely generated modules are finitely generated).

Note ε
(k)
i is an isomorphism for all i < k + 1. Let E(n) be a semibasis for L(n).

Let F = lim→
n

L(n). This is a proof from Apassov. At this point he drew a box and

called it a day. The details are below.
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We have the commutative diagram

· · ·
ε(n−2)
n // L(n−1)

n
ε(n−1)
n //

α(n−1)
n ##

L
(n)
n

ε(n)
n //

α(n)
n

��

L
(n+1)
n

ε(n+1)
n //

α(n+1)
n{{

· · ·

· · · Mn · · · .

Therefore ε
(n)
n is an isomorphism and ε

(j)
n is an isomorphism for all j > n, that is,

stabilization occurs. So Fn = L
(n)
n
∼= L

(n+1)
n

∼= · · · . Then βn = α
(n)
n
∼= α

(n+1)
n

∼=
· · · .

To show that F is semifree we set Gn = E
(n)
n
∼= E

(n+1)
n

∼= · · · . Let x ∈ Fn, that

is, x ∈ L(n)
n . Then L

(n)
n is semifree with semibasis E(n). Therefore x is uniquely

a linear combination of elements of E(n) with coefficients in A because Ai = 0 for

all i < 0 and x ∈ L(n)
n , the only basis vector in linear combination are in E

(n)
i with

i 6 n. Therefore it is a unique linear combination in L.

We have Fi = 0 for all i < u from the construction L
(n)
i = 0 for all i < u.

We have for all i, the map Hi(β) is an isomorphism because Hi(β) ∼= Hi(α
(n)
n ) is

an isomorphism.

The map β is DG A-linear because βi = α
(k)
i is DG A-linear. �

We can extend these concepts to construct ExtA and TorA.
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