
S. Cooper MTH 521

Problem Set 1
Due: Thursday, September 12

Work all of the following problems. A subset of the problems will be graded. Be sure to adhere
to the expectations outlined in the Problem Set Guidelines Sheet.

Unless otherwise stated, all problems can be found in the appropriate Problems section of the
textbook (Elementary Number Theory by U. Dudley, 2nd Edition).

(1) Section 2 # 5

(2) Section 2 # 9

(3) Twin primes are pairs of consecutive odd integers (p, p + 2) which are both prime. For
example, (3, 5), (5, 7), (11, 13) are all pairs of twin primes. The Twin Primes Conjecture
(still unresolved) claims that there are infinitely many pairs of twin primes.

(a) Give three more examples of twin primes in addition to what is given in this exercise.

(b) Building on this idea, we can define a set of “triplet primes” to be three consecutive
odd integers (p, p + 2, p + 4) which are all prime. A quick scan of our list of primes
less than 100 shows that there is exactly one set of triplet primes in that range:
namely (3, 5, 7). Are there any other triplet primes (ever)? If so, give an example.
If not, prove that there are no others.

(4) Mersenne Primes: A prime integer which is of the form 2n−1 for some integer n is called
a Mersenne prime. Mersenne primes are named after the French monk Marin Mersenne
(1588 - 1648) who studied them. It is still unknown whether there are infinitely may
Mersenne primes.

(a) Find four Mersenne primes.

(b) Let p be a prime integer. Must 2p − 1 be a prime integer also? If yes, prove your
claim. If no, give a specific counter-example.

(c) Preparation for part (d): Let x and y be integers. Recall the well-known formulas:
x2 − y2 = (x − y)(x + y) and x3 − y3 = (x − y)(x2 + xy + y2). Prove that for any
integer n ≥ 1

xn − yn = (x− y)(xn−1 + xn−2y + xn−3y2 + · · ·+ xyn−2 + yn−1).

(Note: You do not need to use induction to prove this. Rather, try to simplify the
right-hand side of the equation.)

(d) Prove that if 2n−1 is a Mersenne prime, then n must also be a prime integer. (Hint:
Note that xcd − 1 = (xc)d − 1d for any integer x and positive integers c, d.)

(5) The E-zone: The set consisting of the positive even integers along with 1, i.e., E =
{1, 2, 4, 6, 8, 10, . . .}, is called the E-zone. Any integer in the E-zone is called an E-
number. We say that an E-number x divides an E-number y in the E-zone if there exists
an E-number u such that y = xu. We call an E-number an E-prime if it is greater than
1 and its only E-zone divisors are 1 and itself. For example, 2, 6, 10, 14 and 18 are the
first few E-primes.
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(a) Prove that an E-number is an E-prime if and only if it is twice an odd integer.
(Note: There are two things to be shown here.)

(b) Let p be an E-prime and let a and b be E-numbers. Suppose that p divides ab in
the E-zone. Must p divide a or b in the E-zone? If yes, provide a proof. If no, give
a specific counter-example.

(c) Prove that every E-number greater than 1 can be factored into a product of E-
primes.

(d) Find all possible E-prime factorizations of 36, 60, 72, and 360.

Graduate Students:

(e) Although part (4c) shows the existence of E-prime factorization of E-numbers, you
should have noticed that part (4d) shows that this factorization is not always unique.
However, you should have noticed that the number of E-primes occurring in every
factorization of a given E-number was always the same. For example, every factor-
ization you found of 36 should have involved 2 E-primes, and every factorization you
found of 72 should have involved 3 E-primes. Is this always the case? In other words,
either prove or disprove (by giving a counter-example) the following conjecture:

Conjecture: Suppose the E-number n can be factored as a product of k E-primes.
Then every factorization of n into E-primes involves exactly k E-prime factors.
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