
S. Cooper MTH 523

Quiz Set 4
For Quiz on Thursday, March 27

Work all of the following problems. A subset of the problems and definitions from Chapter
7 will be on Quiz 4 to be given March 27. Quizzes will be graded for correctness and clarity.

(1) (Gallian, Chapter 7 Exercises, #7) Find all the left cosets of {1, 11} in U(30). Be sure
to fully justify your answer.

(2) (Gallian, Chapter 7 Exercises, #9) Let |a| = 30. How many left cosets of 〈a4〉 in 〈a〉
are there? List them. Be sure to fully justify your answer.

(3) (Gallian, Chapter 7 Exercises, #11) If H and K are subgroups of G and g belongs to
G, show that g(H ∩K) = gH ∩ gK.

(4) (Gallian, Chapter 7 Exercises, #16) Suppose that K is a proper subgroup of H and H
is a proper subgroup of G. If |K| = 42 and |G| = 420, what are the possible orders of
H? Be sure to fully justify your answer.

(5) (Gallian, Chapter 7 Exercises, #17) Let G be a group with |G| = pq, where p and q
are prime. Prove that every proper subgroup of G is cyclic.

(6) (Gallian, Chapter 7 Exercises, #22) Suppose H and K are subgroups of a group G.
If |H| = 12 and |K| = 35, find |H ∩K|. Generalize. Hint: You should first show that
H ∩K is a subgroup of both H and K.

(7) (Gallian, Chapter 7 Exercises, #24) Suppose that H and K are subgroups of G and
there are elements a and b in G such that aH ⊆ bK. Prove that H ⊆ K.

(8) (Gallian, Chapter 7 Exercises, #28) Let G be a group of order 25. Prove that G is
cyclic or g5 = e for all g in G.

(9) (Gallian, Chapter 7 Exercises, #33) Let H and K be subgroups of a finite group G
with H ⊆ K ⊆ G. Prove that |G : H| = |G : K||K : H|. Hint: You should first verify
that H is a subgroup of K.

(10) Let G be a group of order pn where p is prime. Prove that the center of G cannot have
order pn−1. Hint: Try a proof by contradiction.

(11) Prove that a group of order 12 must have an element of order 2. You may use the
general fact (without proof) that an element and its inverse have the same order.
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