S. Cooper Math 165

Lab 4

Trigonometric Limits, Limits at Infinity, The Squeeze and
Intermediate Value Theorems, and the Precise Definition of
Limits
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2. Evaluate the following limits.
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(h) lim (In(v522% + 2) — In(x))
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3. Does the Intermediate Value Theorem apply to the function f(z) = 7 on the
x
interval [0, 2|7
4. Show that the following functions have at least one real solution.
(a) 323 =1—sinx
(b) tanz =1—x
(c) e =z
5. Suppose that f is a continuous function on [1,5] and that the only solutions of the

equation f(z) =6 are x =1 and z = 4. If f(2) = 8, explain why f(3) > 6.

6. Use the formal definition of the limit to rigorously prove that lirq (3x +2) =5.
T—r

7. Use the formal definition of a limit to show that if lim f(z) = L and limg(z) = K,

xr—c xr—c
then

lim(f(x)+g(z)) = L+ K.

T—x

Hint: You will need to use the Triangle Inequality |a + b| < |a| + |b].
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