Lab 8

Extreme Values, The Mean Value Theorem, Monotonicity, and the Shape of a Graph

- 1. Find the critical points of the following functions.
 - (a) $f(x) = x^3 4x^2 + 4x$
 - (b) $f(x) = x^2(x+2)^3$
 - (c) $g(\theta) = \sin^2(\theta) + \theta$
- 2. Find the extreme values on the interval.
 - (a) f(x) = x(10 x), [-1, 3]
 - (b) $g(\theta) = \sin^2 \theta \cos \theta$, $[0, 2\pi]$
 - (c) $f(x) = x 12 \ln x$, [5, 40]
- 3. Verify that $f(x) = x\sqrt{x+6}$ satisfies the hypotheses of Rolle's Theorem on the interval [-6, 0]. Then find all numbers c that satisfy the conclusion of Rolle's Theorem.
- 4. Verify that $f(x) = f(x) = x^3 + x 1$ satisfies the hypotheses of the Mean Value Theorem on the interval [0, 2]. Then find all numbers c that satisfy the conclusion of the Mean Value Theorem.
- 5. Show that the equation $2x 1 \sin x = 0$ has exactly one real root.
- 6. Suppose that $f'(x) \leq 2$ for x > 0 and f(0) = 4. Show that $f(x) \leq 2x + 4$ for all $x \geq 0$.
- 7. Use the First Derivative Test to determine whether the critical point(s) is a local max or min (or neither).

(a)
$$y = \frac{1}{x^2 + 1}$$

(b) $f(x) = \cos^2 x + \sin x$ on $(0, \pi)$
(c) $f(x) = \frac{1}{3}x^3 - x^2 + x$

- 8. Find the points of inflection for the following functions.
 - (a) $y = x^3 4x^2 + 4x$

(b)
$$f(x) = (x^2 - x)e^{-x}$$

9. Determine the intervals on which f is concave up or concave down.

(a)
$$f(x) = 3x^5 - 5x^4 + 1$$

- (b) $f(x) = x^{5/3}$
- (c) $f(x) = \frac{3x}{x^2 4}$