Lab 8

Extreme Values, The Mean Value Theorem, Monotonicity, and the Shape of a Graph

1. Find the critical points of the following functions.
(a) $f(x)=x^{3}-4 x^{2}+4 x$
(b) $f(x)=x^{2}(x+2)^{3}$
(c) $g(\theta)=\sin ^{2}(\theta)+\theta$
2. Find the extreme values on the interval.
(a) $f(x)=x(10-x),[-1,3]$
(b) $g(\theta)=\sin ^{2} \theta-\cos \theta,[0,2 \pi]$
(c) $f(x)=x-12 \ln x,[5,40]$
3. Verify that $f(x)=x \sqrt{x+6}$ satisfies the hypotheses of Rolle's Theorem on the interval $[-6,0]$. Then find all numbers c that satisfy the conclusion of Rolle's Theorem.
4. Verify that $f(x)=f(x)=x^{3}+x-1$ satisfies the hypotheses of the Mean Value Theorem on the interval $[0,2]$. Then find all numbers c that satisfy the conclusion of the Mean Value Theorem.
5. Show that the equation $2 x-1-\sin x=0$ has exactly one real root.
6. Suppose that $f^{\prime}(x) \leq 2$ for $x>0$ and $f(0)=4$. Show that $f(x) \leq 2 x+4$ for all $x \geq 0$.
7. Use the First Derivative Test to determine whether the critical point(s) is a local max or min (or neither).
(a) $y=\frac{1}{x^{2}+1}$
(b) $f(x)=\cos ^{2} x+\sin x$ on $(0, \pi)$
(c) $f(x)=\frac{1}{3} x^{3}-x^{2}+x$
8. Find the points of inflection for the following functions.
(a) $y=x^{3}-4 x^{2}+4 x$
(b) $f(x)=\left(x^{2}-x\right) e^{-x}$
9. Determine the intervals on which f is concave up or concave down.
(a) $f(x)=3 x^{5}-5 x^{4}+1$
(b) $f(x)=x^{5 / 3}$
(c) $f(x)=\frac{3 x}{x^{2}-4}$
