Problem Set 10 Due: 3:00 p.m. on Wednesday, November 4

Instructions: Carefully read Sections 10.4 and 10.5 of the textbook. Work all of the following problems. A subset of the problems will be graded. Be sure to adhere to the expectations outlined on the sheet *Guidelines for Problem Sets*. Submit your solutions in-class or to Dr. Cooper's mailbox in the Department of Mathematics.

Exercises: For this Problem Set, let R be a commutative ring with identity.

- 1. (Dummit and Foote §10.4 #20) Let I = (2, x) be the ideal generated by 2 and x in the ring $R = \mathbb{Z}[x]$. Show that the element $2 \otimes 2 + x \otimes x$ in $I \otimes_R I$ is not a simple tensor, i.e., cannot be written as $a \otimes b$ for some $a, b \in I$.
- 2. (The Five Lemma) Consider the following commutative diagram of R-module homomorphisms with exact rows:

$$\begin{array}{c} A_1 \xrightarrow{f_1} A_2 \xrightarrow{f_2} A_3 \xrightarrow{f_3} A_4 \xrightarrow{f_4} A_5 \\ \downarrow \alpha_1 & \downarrow \alpha_2 & \downarrow \alpha_3 & \downarrow \alpha_4 & \downarrow \alpha_5 \\ B_1 \xrightarrow{g_1} B_2 \xrightarrow{g_2} B_3 \xrightarrow{g_3} B_4 \xrightarrow{g_4} B_5 \end{array}$$

- (a) Prove that if α_1 is surjective and α_2, α_4 are injective, then α_3 is injective.
- (b) Prove that if α_5 is injective and α_2, α_4 are surjective, then α_3 is surjective.
- 3. Consider the following commutative diagram of R-module homomorphisms with exact rows:

$$A_1 \xrightarrow{f_1} A_2 \xrightarrow{f_2} A_3 \xrightarrow{f_3} 0$$
$$\downarrow^{\alpha_1} \qquad \downarrow^{\alpha_2} \qquad \downarrow^{\alpha_3}$$
$$\longrightarrow B_1 \xrightarrow{g_1} B_2 \xrightarrow{g_2} B_3$$

(a) Prove that there is an exact sequence $\operatorname{Ker}(\alpha_1) \to \operatorname{Ker}(\alpha_2) \to \operatorname{Ker}(\alpha_3)$.

0

- (b) Prove that there is an exact sequence $B_1/\text{Im}(\alpha_1) \to B_2/\text{Im}(\alpha_2) \to B_3/\text{Im}(\alpha_3)$.
- 4. Let L, M, and N be unitary R-modules. Let $f : M \to N$ be an R-module isomorphism. Prove that the map $f^* : \operatorname{Hom}_R(N, L) \to \operatorname{Hom}_R(M, L)$ is an isomorphism.