Problem Set 11

Due: 5:00 p.m. on Tuesday, November 10

Instructions: Carefully read Section 10.5 of the textbook. Work all of the following problems. A subset of the problems will be graded. Be sure to adhere to the expectations outlined on the sheet Guidelines for Problem Sets. Submit your solutions in-class or to Dr. Cooper's mailbox in the Department of Mathematics.

Exercises: For this Problem Set, let R be a ring with identity

1. (Dummit and Foote $\S 10.5 \# 3)$ Let P_{1} and P_{2} be R-modules. Prove that $P_{1} \oplus P_{2}$ is a projective R-module if and only if both P_{1} and P_{2} are projective. You may assume the fact that any direct sum of free R-modules is free.
2. (Dummit and Foote $\S 10.5 \# 6$) Prove that the following are equivalent:
(i) Every R-module is projective.
(ii) Every R-module is injective.
3. Assume that R is commutative and let M be an R-module. Prove that the following conditions are equivalent:
(i) M is flat over R.
(ii) For every injective R-module homomorphism $g^{\prime}: N^{\prime} \longrightarrow N$, the induced homomorphism $i d_{M} \otimes g^{\prime}: M \otimes_{R} N^{\prime} \longrightarrow M \otimes_{R} N$ is injective.
(iii) For every short exact sequence

$$
0 \longrightarrow N^{\prime} \xrightarrow{g^{\prime}} N \xrightarrow{g} N^{\prime \prime} \longrightarrow 0
$$

of R-module homomorphisms, the induced sequence

$$
0 \longrightarrow M \otimes_{R} N^{\prime} \xrightarrow{i d_{M} \otimes g^{\prime}} M \otimes_{R} N \xrightarrow{i d_{M} \otimes g} M \otimes_{R} N^{\prime \prime} \longrightarrow 0
$$

is exact.
4. Let R be a commutative ring and let $S \subseteq R$ be a multiplicatively closed subset. Let M be an R-module. You may assume the fact that $\left(S^{-1} R\right) \otimes_{R} M$ has a well-defined $\left(S^{-1} R\right)$-module structure given by

$$
\frac{r}{s}\left(\frac{r^{\prime}}{s^{\prime}} \otimes_{R} m\right):=\frac{r r^{\prime}}{s s^{\prime}} \otimes_{R} m .
$$

Prove that the R-module isomorphism $g:\left(S^{-1} R\right) \otimes_{R} M \rightarrow S^{-1} M$ given by

$$
\frac{r}{s} \otimes_{R} m \mapsto \frac{r m}{s}
$$

is a $\left(S^{-1} R\right)$-module isomorphism.

