Problem Set 12

Due: 3:00 p.m. on Wednesday, November 18

Instructions: Carefully read Sections 11.1 and 11.2 of the textbook. Work all of the following problems. A subset of the problems will be graded. Be sure to adhere to the expectations outlined on the sheet Guidelines for Problem Sets. Submit your solutions in-class or to Dr. Cooper's mailbox in the Department of Mathematics.

1. (Dummit and Foote $\S 11.1 \# 8)$ Let V be a vector space over the field F and let φ be a linear transformation of V to itself. A nonzero element $v \in V$ satisfying $\varphi(v)=\lambda v$ for some $\lambda \in F$ is called an eigenvector of φ with eigenvalue λ. Prove that for any fixed $\lambda \in F$ the collection of eigenvectors of φ with eigenvalue λ together with 0 forms a subspace of V.
2. (Dummit and Foote $\S 11.1 \# 9$) Let V be a vector space over the field F and let φ be a linear transformation of V to itself. Suppose for $i=1,2, \ldots, k$ that $v_{i} \in V$ is an eigenvector for φ with eigenvalue $\lambda_{i} \in F$ and that all the eigenvalues λ_{i} are distinct. Prove that $v_{1}, v_{2}, \ldots, v_{k}$ are linearly independent. Conclude that any linear transformation on an n-dimensional vector space has at most n distinct eigenvalues.
3. (Dummit and Foote $\S 11.2 \# 38$) Let A and B be square matrices. Prove that the trace of their Kronecker product is the product of their traces: $\operatorname{tr}(A \otimes B)=\operatorname{tr}(A) \operatorname{tr}(B)$. (Recall that the trace of a square matrix is the sum of its diagonal entries.)
4. (Dummit and Foote $\S 11.2 \# 39$) Let F be a subfield of K and let $\beta: V \rightarrow W$ be a linear transformation of finite dimensional vector spaces over F.
(a) Prove that $1 \otimes \beta$ is a K-linear transformation from the vector space $K \otimes_{F} V$ to $K \otimes_{F} W$ over K. (Here 1 denotes the identity map from K to itself.)
(b) Let $\mathcal{B}=\left\{v_{1}, \ldots, v_{n}\right\}$ and $\mathcal{E}=\left\{w_{1}, \ldots, w_{m}\right\}$ be bases of V and W respectively. Prove that the matrix of $1 \otimes \beta$ with respect to the bases $\left\{1 \otimes v_{1}, \ldots, 1 \otimes v_{n}\right\}$ and $\left\{1 \otimes w_{1}, \ldots, 1 \otimes w_{m}\right\}$ is the same as the matrix of β with respect to \mathcal{B} and \mathcal{E}.
