Problem Set 13
 Due: 3:00 p.m. on Wednesday, November 25

Instructions: Carefully read Sections 11.3 and 11.4 of the textbook. Work all of the following problems. A subset of the problems will be graded. Be sure to adhere to the expectations outlined on the sheet Guidelines for Problem Sets. Submit your solutions in-class or to Dr. Cooper's mailbox in the Department of Mathematics.

Exercises: For this Problem Set, let R be a non-zero commutative ring with identity and let A, B, C be matrices with entries in R such that A and B are square.

1. Assume that the ring R is a field. For this exercise, you may use the fact that a matrix in $M_{n \times n}(R)$ is invertible if and only if its determinant is non-zero. Prove that the following conditions are equivalent:
(i) A is invertible;
(ii) The columns of A are linearly independent;
(iii) The rows of A are linearly independent.
2. Assume that A, B, C fit into a block matrix

$$
T=\left[\begin{array}{ll}
A & 0 \\
C & B
\end{array}\right] .
$$

Prove that $\operatorname{det}(T)=\operatorname{det}(A) \operatorname{det}(B)$. (Hint: Expand along the top row and use induction.)
3. Let R be a field. Let $P \in M_{n \times n}(R)$ be an invertible matrix and set $A^{\prime}=P A P^{-1}$. Let $\lambda \in R$. We define the eigenspace of A associated to λ to be

$$
E_{\lambda}(A)=\{\text { eigenvectors of } A \text { with eigenvalue } \lambda\} \cup\{0\} .
$$

Recall that on Problem Set 12 you showed that E_{λ} is a subspace of R^{n}.
(i) Prove that v is an eigenvector of A with eigenvalue λ if and only if $P v$ is an eigenvector of A^{\prime} with eigenvalue λ.
(ii) Prove that λ is an eigenvalue of A if and only if λ is an eigenvalue of A^{\prime}.
(iii) Prove that for all $\lambda \in R$, there is an R-linear isomorphism $E_{\lambda}(A) \cong E_{\lambda}\left(A^{\prime}\right)$.
4. Let V be a finite dimensional vector space over the field F. Let S be any subset of V^{*} and define the annihilator of S to be $\operatorname{ann}(S)=\{v \in V \mid f(v)=0$ for all $f \in S\}$. You may assume that $\operatorname{ann}(S)$ is a subspace of V. Prove that if W^{*} is any subspace of V^{*}, then

$$
\operatorname{dim}_{F}\left(W^{*}\right)+\operatorname{dim}_{F}\left(\operatorname{ann}\left(W^{*}\right)\right)=\operatorname{dim}_{F}(V) .
$$

