Problem Set 14 Due: 3:00 p.m. on Wednesday, December 2

Instructions: Carefully read Section 12.1 of the textbook. Work all of the following problems. A subset of the problems will be graded. Be sure to adhere to the expectations outlined on the sheet *Guidelines for Problem Sets.* Submit your solutions in-class or to Dr. Cooper's mailbox in the Department of Mathematics.

Exercises: For this Problem Set, let R and S be commutative rings with identity and let M be a unital R-module.

- 1. Prove that the following conditions are equivalent:
 - (i) M is a Noetherian R-module;
 - (ii) Every submodule $N \subseteq M$ is a Noetherian *R*-module;
 - (iii) For every submodule $N \subseteq M$, the quotient M/N is a Noetherian *R*-module.
- 2. Let $\alpha: S \to R$ be a surjective ring homomorphism. Prove that M is a Noetherian S-module if and only if M is a Noetherian R-module.
- 3. Let R be an integral domain and let M be a projective R-module.
 - (a) Prove that M is torsion free.
 - (b) Assume further that R is a P.I.D. and that M is finitely generated. Prove that M is free.
- Bonus. Let R be a Noetherian ring and $\alpha: R \to R$ be a surjective ring homomorphism. Prove that α is an isomorphism.