S. Cooper Math 720

Problem Set 2

Due: 3:00 p.m. on Wednesday, September 9

Instructions: Carefully read Section 7.3 of the textbook. Work all of the following problems. A subset of the problems will be graded. Be sure to adhere to the expectations outlined on the sheet Guidelines for Problem Sets. Submit your solutions in-class or to Dr. Cooper's mailbox in the Department of Mathematics.

Exercises: For this Problem Set, assume that all rings are non-zero and contain an identity $1 \neq 0$.

- 1. (Dummit and Foote #7) Let $R = \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \mid a,b,d \in \mathbb{Z} \right\}$ be the subring of $M_2(\mathbb{Z})$ of upper triangular matrices. Prove that the map $\varphi: R \to \mathbb{Z} \times \mathbb{Z}$ defined by $\varphi: \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \mapsto (a,d)$ is a surjective homomorphism and describe its kernel.
- 2. (Dummit and Foot #10) Decide which of the following are ideals of the ring $\mathbb{Z}[x]$:
 - (i) the set S of all polynomials whose constant term is a multiple of 3
 - (ii) $S = \mathbb{Z}[x^2]$ (i.e., the polynomials in which only even powers of x appear)
 - (iii) the set S of polynomials whose coefficients sum to zero
 - (iv) the set S of polynomials p(x) such that p'(0) = 0, where p'(x) is the usual first derivative of p(x) with respect to x.
- 3. (Dummit and Foote #13) Prove that the ring $M_2(\mathbb{R})$ contains a subring that is isomorphic to \mathbb{C} .
- 4. (Dummit and Foote #16) Let $\varphi : R \to S$ be a surjective homomorphism of rings. Prove that the image of the center of R is contained in the center of S.
- 5. (Dummit and Foote #17) Let R and S be non-zero rings with identity and denote their respective identities by 1_R and 1_S . Let $\varphi: R \to S$ be a non-zero homomorphism of rings.
 - (a) Prove that if $\varphi(1_R) \neq 1_S$ then $\varphi(1_R)$ is a zero divisor in S. Deduce that if S is an integral domain then every ring homomorphism from R to S sends the identity of R to the identity of S.
 - (b) Prove that if $\varphi(1_R) = 1_S$ then $\varphi(u)$ is a unit in S and that $\varphi(u^{-1}) = \varphi(u)^{-1}$ for each unit u of R.
- 6. Show that for D = 6 that the group of units \mathcal{O}^{\times} of the quadratic integer ring \mathcal{O} is infinite by exhibiting an explicit unit of infinite (multiplicative) order in the ring.
- 7. Let $f: R \to S$ be a homomorphism of rings. Suppose that $I \subset R$ is an ideal. Define $\overline{f}: R/I \to S$ by $\overline{f}(r+I) = f(r)$. Prove that \overline{f} is a well-defined ring homomorphism if and only if $I \subseteq \operatorname{Ker}(f)$.