Problem Set 3
 Due: 3:00 p.m. on Wednesday, September 16

Instructions: Carefully read Sections 7.3 and 7.4 of the textbook. Work all of the following problems. A subset of the problems will be graded. Be sure to adhere to the expectations outlined on the sheet Guidelines for Problem Sets. Submit your solutions in-class or to Dr. Cooper's mailbox in the Department of Mathematics.

Exercises: For this Problem Set, assume that all rings are non-zero and contain an identity $1 \neq 0$.

1. (Dummit and Foote $\S 7.3 \# 34$) Let I and J be ideals of the ring R.
(a) Prove that $I+J$ is the smallest ideal of R containing both I and J.
(b) Prove that $I J$ is an ideal contained in $I \cap J$.
(c) Give an example where $I J \neq I \cap J$.
(d) Prove that if R is commutative and if $I+J=R$ then $I J=I \cap J$.
2. Let R be an integral domain.
(a) (Dummit and Foote $\S 7.4 \# 8)$ Prove that $(a)=(b)$ for some elements $a, b \in R$, if and only if $a=u b$ for some unit u of R.
(b) Let $a, b, c \in R$ such that $a \neq 0$.
(i) Prove that if $(a b)=(a c)$, then $(b)=(c)$.
(ii) Prove that if $(a)=(a b)$, then b is a unit.
3. Let R be a commutative ring, and let I and J be ideals of R. Prove that $I \cup J$ is an ideal of R if and only if either $I \subseteq J$ or $J \subseteq I$.
4. Let R be a commutative ring and let A be the polynomial ring $A=R\left[x_{1}, \ldots, x_{n}\right]$. Consider the ideal $I=\left(x_{1}, \ldots, x_{n}\right) \subseteq A$. Prove that for each $d \in \mathbb{Z}^{+}$, the ideal I^{d} is generated by the set $\left\{x_{1}^{a_{1}} \cdots x_{n}^{a_{n}} \mid a_{1}+\cdots+a_{n}=d\right\}$.
