Problem Set 6 Due: 3:00 p.m. on Wednesday, October 7

Instructions: Carefully read Sections 8.3, 9.1, and 9.2 of the textbook. Work all of the following problems. A subset of the problems will be graded. Be sure to adhere to the expectations outlined on the sheet Guidelines for Problem Sets. Submit your solutions in-class or to Dr. Cooper's mailbox in the Department of Mathematics.

Exercises: For this Problem Set, assume that all rings are non-zero and contain an identity.

1. For the following, let u be a universal side divisor in $\mathbb{Z}[i]$.
(a) Prove that any associate of u is also a universal side divisor in $\mathbb{Z}[i]$.
(b) Prove that there is an associate u^{\prime} of u such that $u^{\prime}=x+i y$ with $x \geq 0$ and $y>0$.
(c) Prove that the complex conjugate \bar{u} of u is also a universal side divisor in $\mathbb{Z}[i]$.
(d) Apply the definition of universal side divisor to $x=1+i$ to deduce that $N(u)=2$ or $N(u)=5$ (where N is the usual field norm defined in Section 7.1). Conclude that u is an associate of either $1+i, 2+i$ or $1+2 i$.
(e) Prove that $1+i$ is a universal side divisor in $\mathbb{Z}[i]$.
(f) The Gaussian integer $2+i$ is a universal side divisor in $\mathbb{Z}[i]$. Use this fact to explain why $1+2 i$ is a universal side divisor in $\mathbb{Z}[i]$. (Hint: Show that $1+2 i$ is an associate of $2-i$.)
(g) List the universal side divisors in $\mathbb{Z}[i]$.
2. In $\mathbb{Z}[\sqrt{5}]$, prove that $1+\sqrt{5}$ is irreducible but not prime. Deduce that $\mathbb{Z}[\sqrt{5}]$ is not a Unique Factorization Domain.
3. (Dummit and Foote $\S 9.1 \# 13)$ Prove that the rings $F[x, y] /\left(y^{2}-x\right)$ and $F[x, y] /\left(y^{2}-x^{2}\right)$ are not isomorphic for any field F.
4. Let R be an integral domain and consider the polynomial ring $S=R\left[x_{1}, \ldots, x_{n}\right]$.
(a) Let $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in R^{n}$ and $f \in S$. Use induction to prove that there are polynomials q_{1}, \ldots, q_{n} such that $q_{i}=q_{i}\left(x_{1}, \ldots, x_{i}\right) \in R\left[x_{1}, \ldots, x_{i}\right]$ for $i=1, \ldots, n$ and

$$
f=\left[\sum_{i} q_{i} \cdot\left(x_{i}-a_{i}\right)\right]+f(\mathbf{a}) .
$$

(b) Let $Z \subseteq S$ and set $I:=(Z) S$. Let $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in R^{n}$, and consider the ideal $\mathcal{M}=\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right) S$. Prove that the following conditions are equivalent:
(i) $I \subseteq \mathcal{M}$.
(ii) For all $f \in I$, we have $f(\mathbf{a})=0$.
(iii) For all $f \in Z$, we have $f(\mathbf{a})=0$.

Bonus. (Dummit and Foote $\S 9.2 \# 4)$ Let F be a finite field. Prove that $F[x]$ contains infinitely many primes.

