Problem Set 7
 Due: 3:00 p.m. on Thursday, October 15

Instructions: Carefully read Sections 9.3, 9.4, and 9.5 of the textbook. Work all of the following problems. A subset of the problems will be graded. Be sure to adhere to the expectations outlined on the sheet Guidelines for Problem Sets. Submit your solutions in-class or to Dr. Cooper's mailbox in the Department of Mathematics.

Exercises:

1. (Dummit and Foote $\S 9.3 \# 1$) Let R be an integral domain with quotient field F and let $p(x)$ be a monic polynomial in $R[x]$. Assume that $p(x)=a(x) b(x)$ where $a(x)$ and $b(x)$ are monic polynomials in $F[x]$ of smaller degree than $p(x)$. Prove that if $a(x) \notin R[x]$ then R is not a Unique Factorization Domain. Deduce that $\mathbb{Z}[2 \sqrt{2}]$ is not a U.F.D.
2. (Dummit and Foote $\S 9.4 \# 7)$ Prove that $\mathbb{R}[x] /\left(x^{2}+1\right)$ is a field which is isomorphic to the complex numbers.
3. (Dummit and Foote $\S 9.5 \# 1$) Let F be a field and let $f(x)$ be a non-constant polynomial in $F[x]$. Describe the nilradical of $F[x] /(f(x))$ in terms of the factorization of $f(x)$.
4. Prove that the rings $\mathbb{Q}[x, y] /\left(y^{2}-x^{3}\right)$ and $\mathbb{Q}\left[t^{2}, t^{3}\right]$ (where x, y and t are indeterminates) are isomorphic. (Hint: Consider the ring homomorphism $\phi: \mathbb{Q}[x, y] \rightarrow \mathbb{Q}\left[t^{2}, t^{3}\right]$ mapping $f(x, y)$ to $f\left(t^{2}, t^{3}\right)$ and use the Division Algorithm to determine the kernel of ϕ.)
