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Introduction

Two of the most fundamental objects in mathematics are (1) the set Z of all
integers, and (2) the set R[x] of all polynomials in x with real number coefficients.
These two sets share many common features. Each one comes equipped with two
binary operations, addition and multiplication, that satisfy certain axioms essen-
tially saying that these operations are “nice”. A set satisfying with two operations
satisfying these axioms is called a commutative ring with identity. Other examples
include Zn, Q, R, and C, so rings are fundamental.

What is not obvious is how important rings are. For instance, much of the
world’s internet security is based on Fermat’s Little Theorem, which is essentially
a statement about exponentiation in Zn. As a second example, the modern field of
Algebraic Geometry studies geometric objects essentially by replacing them with
rings; theorems about rings translate to theorems about geometric objects, and vice
versa. The theory of rings will be our starting point in this course.

One way to study a ring R is to study the objects that it “acts on”. This is
like studying a group by studying the sets it acts on. (This is how one proves the
Sylow theorems, for instance, and how one can prove that various groups cannot
be simple.) The most interesting objects R acts on are called “modules”. One
uses modules like group actions to show that certain rings have certain desirable
properties (or do not). If the ring comes from a geometric object, then this property
may translate to information about the geometry of that object. The theory of
modules is the second part of this course.

When R is a field, the R-modules are nothing more than vector spaces over R,
so we recover much of the theory of linear algebra. In fact, we will use modules to
prove some strong results about matrices. For instance, we will prove the familiar
fact that the determinant of a square matrix can be computed by expanding along
any row or column, and we will prove that a square matrix can be put in a certain
“canonical form” which is much nicer for computations. The first of these facts
follows from a uniqueness theorem for alternating forms. The second one follows
from a version of the Fundamental Theorem of Finite Abelian Groups for modules
over a polynomial ring. The third part of this course is linear algebra.
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Notation

Z is the set of all integers.
Zn is the set of integers modulo n.
nZ is the set of all integer multiples of n.
N is the set of all non-negative integers.
Q is the set of all rational numbers.
R is the set of all real numbers.
C is the set of all complex numbers.
Sn is the symmetric group on n letters.
R[x] is the set of all polynomials in x with real number coefficients.

vii





CHAPTER 1

Foundations

1.1. Sets and Arithmetic

Definition 1.1.1. The cartesian product of two non-empty sets S and T is

S × T = {(s, t) | s ∈ S, t ∈ T}.

More generally, let {Sα}α∈A be a set of non-empty sets. The cartesian product∏
α∈A Sα is∏

α∈A Sα = {sequences (sα) such that sα ∈ Sα for each α ∈ A}.

Fact 1.1.2 (Division Algorithm). For all a, b ∈ Z, if b 6= 0, then there exist q, r ∈ Z
such that a = bq + r and |r| < |b|.

Fact 1.1.3 (Fundamental Theorem of Arithmetic). Every integer n > 2 can be
written as a product of (positive) prime numbers. Moreover, this factorization is
unique up to re-ordering.

1.2. Additive Abelian Groups

Definition 1.2.1. An additive abelian group is a non-empty set G equipped with
a binary operation + that is associative and commutative, and with an additive
identity 0G such that every element g ∈ G has an additive inverse −g. A subgroup
of G is a subset H ⊆ G which is itself a group under the operation for G; we
sometimes write H 6 G.

Let n ∈ N and g ∈ G. Define 0 · g = 0G and 1 · g = g. Inductively, when n > 2
define ng = (n− 1)g + g. Set (−n)g = −(ng).

Fact 1.2.2 (Subrgroup Test). Let G be an additive abelian group and H ⊆ G a
subset. Then H is a subgroup of G if and only if it satisfies the following conditions:

(1) H 6= ∅; and
(2) H is closed under the subtraction from G.

Remark 1.2.3. In the subgroup test, item (2) can be replaced with the following:

(2′) H is closed under addition and additive inverses.

Example 1.2.4. Let G and H be additive abelian groups. The cartesian product
G×H is a group under the “coordinatewise” operation

(g, h) + (g′, h′) = (g + g′, h+ h′)

with 0G×H = (0G, 0H) and −(g, h) = (−g,−h).
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2 1. FOUNDATIONS

More generally, let {Gα}α∈A be a set of additive abelian groups. The cartesian
product

∏
α∈AGα is a group under the “coordinatewise” operation

(gα) + (hα) = (gα + hα)

−(gα) = (−gα)

0∏
α∈AGα

= (0Gα).

Sometimes, we call this the direct product of the Gα.
The direct sum of the Gα is the subgroup

⊕α∈AGα = {(gα) ∈
∏
α∈AGα | gα = 0 for all but finitely many α ∈ A}
⊕α∈AGα 6

∏
α∈AGα.

Sometimes we write
∐
α∈AGα instead of ⊕α∈AGα, and we call this the coproduct. If

A = ∅, then
∏
α∈∅Gα = ⊕α∈∅Gα = {0}. If A is finite, then

∏
α∈AGα = ⊕α∈AGα.

Given any set A and any additive abelian group G, set G(A) = ⊕α∈AG the
direct sum of A many copies of G, and GA =

∏
α∈AG the direct product of A

many copies of G.

Definition 1.2.5. A homomorphism of additive abelian groups (or additive abelian
group homomorphism) is a function f : G→ H where G and H are additive abelian
groups and f(g+g′) = f(g)+f(g′) for all g, g′ ∈ G. The kernel of f is the subgroup

Ker(f) = {g ∈ G | f(g) = 0H} 6 G.

The homomorphism f is a monomorphism if it is injective. The homomorphism f
is an epimorphism if it is surjective. The homomorphism f is an isomorphism if it
is bijective. If there is an isomorphism g : G → H, then we say that G and H are
isomorphic and write G ∼= H.

Fact 1.2.6. If f : G → H is a homomorphism of additive abelian groups, then
f(0G) = 0H , and f(−a) = −f(a) for all a ∈ G.

Definition 1.2.7. Let G be an additive abelian group and H 6 G a subgroup.
For an element g ∈ G, define the left coset g +H to be

g +H := {g + h ∈ G | h ∈ H}.

Let G/H denote the set of all left cosets

G/H = {g +H | g ∈ G}.

Fact 1.2.8. Let G be an additive abelian group and H 6 G a subgroup. Define
a relation on G as: g ∼ g′ provided that g − g′ ∈ H. Then ∼ is an equivalence
relation, and for each g ∈ G the equivalence class [g] is the coset g+H. Thus G/H
is the set of equivalence classes under ∼. Another notation for [g] is g.

The set G/H is an additive abelian group with

(g +H) + (g′ +H) = (g + g′) +H

0G/H = 0G +H

−(g +H) = (−g) +H.
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Using the equivalence class notations, we have

[g] + [g′] = [g + g′] g + g′ = g + g′

0G/H = [0G] 0G/H = 0G

−[g] = [−g] −g = −g.

Fact 1.2.9. Let G be an additive abelian group and H 6 G.

(a) The function π : G→ G/H given by g 7→ g is a well-defined epimorphism of
groups with Ker(π) = H. (E.g., Z→ Z/nZ.)

(b) π is an isomorphism if and only if H = {0G}.
(c) An example of a group G and a normal subgroup {0G} 6= H 6 G such that

G/H ∼= G: Let G = Z⊕Z⊕Z⊕ · · · and H = Z⊕ {0} ⊕ {0} ⊕ · · · . (Use the
first isomorphism theorem below.)

Fact 1.2.10 (First Isomorphism Theorem). Let f : G→ H be an additive abelian
group homomorphism.

(a) Ker(f) 6 G and Im(f) 6 H.
(b) The function f : G/Ker(f) → Im(f) given by g 7→ f(g) is a well-defined

group isomorphism and so Im(f) ∼= G/Ker(f).
(c) f is a monomorphism if and only if Ker(f) = {0G}.

Fact 1.2.11 (Second Isomorphism Theorem). Let G be an additive abelian group
and H,K 6 G with K ⊆ H.

(a) K 6 H
(b) H/K 6 G/K
(c) The function τ : G/K → G/H given by τ(g+H) = g+K is a well defined group

epimorphism with Ker(τ) = H/K. In particular, (G/K)/(H/K) ∼= G/H.

Definition 1.2.12. Let G be an additive abelian group and H,K 6 G. Set

H +K = {h+ k ∈ G | h ∈ H and k ∈ K}.

Fact 1.2.13 (Third Isomorphism Theorem). Let G be an additive abelian group
and H,K 6 G.

(a) K 6 H +K 6 G
(b) H ∩K 6 H
(c) The function φ : H/(H ∩K)→ (H +K)/K given by φ(h+ (H ∩K)) = h+K

is a well defined group isomorphism. In particular, H/(H ∩K) ∼= (H +K)/K.

Fact 1.2.14. Let G be an additive abelian group and H,K 6 G such that H∩K =
{0} and H + K = G. Then the function f : H ×K → G given by f(h, k) = h + k
is an isomorphism,

Fact 1.2.15. Let G be an additive abelian group with K 6 G, and let π : G→ G/K
be the group epimorphism π(g) = g +K. There is a 1-1 correspondence

{H 6 G | K ⊆ H} ←→ {H ′ 6 G/K}

given by

H 7−→ H/K

π−1(H ′)←− [ H ′





CHAPTER 2

Ring Theory

2.1. Rings, Homomorphisms, Subrings, and Ideals

Definition 2.1.1. A ring is a non-empty set R with two binary operations “+”
and “·” such that (R,+) is an abelian group, · is associative, and (R,+, ·) satisfies
both distributive laws:

r(s+ t) = rs+ rt (r + s)t = rt+ st.

A ring R is commutative if the multiplication · is commutative.
A ring R has identity if there is a (two-sided) multiplicative identity 1R ∈ R.

(Note that we do not assume the existence of multiplicative inverses.)
Assuming that R has a multiplicative identity 1R, a multiplicative inverse for

an element r ∈ R is another element r′ ∈ R such that rr′ = 1R = r′r.
A field is a commutative ring with identity 1R 6= 0R such that every non-zero

element in R has a multiplicative inverse in R.

Example 2.1.2. Under the usual addition and multiplication of integers, Z is a
commutative ring with identity; it is not a field.

Under the usual addition and multiplication, Q, R, and C are fields.
Under the usual addition and multiplication of matrices, M2(R) is a ring with

identity that is not commutative. (More generally, this holds for Mn(R) where
n > 2 and R is any commutative ring with identity.)

Under the usual addition and multiplication of integers, 2Z is a commutative
ring without identity.

Example 2.1.3. Fix an integer n > 2. Define multiplication in Zn by the formula
[a] · [b] = [ab]. (Note that this is well-defined.) Under the usual addition in Zn, this
multiplication endows Zn with the structure of a commutative ring with identity.
Furthermore, Zn is a field if and only if n is prime. (Exercise.)

Proposition 2.1.4. Let R be a ring.

(a) The additive identity in R is unique.
(b) If R has (multiplicative) identity, then the multiplicative identity in R is

unique.
(c) For each r ∈ R, we have 0Rr = 0R = r0R.
(d) Assume that R has identity. Then R = {0R} if and only if 1R = 0R.

Proof. (a) and (b): Exercise.
(c) 0r = (0+0)r = 0r+0r =⇒ 0 = 0r. The other equality is verified similarly.
(d) The implication “ =⇒ ” is immediate. For “⇐= ” assume 1 = 0. For each

r ∈ R, we have r = 1r = 0r = 0. �

Proposition 2.1.5. Let R be a ring and let r, s, t ∈ R.

5



6 2. RING THEORY

(a) If r + s = r + t, then s = t.
(b) r has a unique additive inverse in R, denoted −r.
(c) If r has a multiplicative inverse in R, then the multiplicative inverse is

unique, denoted r−1.
(d) −(−r) = r.
(e) (−r)s = −(rs) = r(−s).
(f) If R has identity, then (−1R)r = −r = r(−1R).
(g) (−r)(−s) = rs.
(h) For all a1, . . . , am, b1, . . . , bn ∈ R, we have

(
∑m
i=1 ai)(

∑n
j=1 bj) =

∑m
i=1

∑n
j=1 aibj .

Proof. (a)–(c): Exercise.
(d) r + (−r) = 0, so r satisfies the defining property for −(−r). Now use

part (b).
(e) rs+ (−r)s = (r+ (−r))s = 0s = 0. This explains the first equality, and the

second one is explained similarly.
(f) −r = −(1r) = (−1)r by part (e). This explains the first equality, and the

second one is explained similarly.
(g) (−r)(−s) = r(−(−s)) = rs.
(h) First, we show a(

∑n
j=1 bj) = (

∑n
j=1 abj) by induction on n: For n > 2, we

have

a(
∑n
j=1 bj) = a(b1 +

∑n
j=2 bj) = ab1 +a

∑n
j=2 bj) = ab1 +

∑n
j=2 abj) = (

∑n
j=1 abj).

Next, we show (
∑m
i=1 ai)(

∑n
j=1 bj) =

∑m
i=1

∑n
j=1 aibj by induction on m. The

base case m = 1 is in the previous paragraph. For m > 2, we have

(
∑m
i=1 ai)(

∑n
j=1 bj) = (a1 +

∑m
i=2 ai)(

∑n
j=1 bj)

= a1(
∑n
j=1 bj) + (

∑m
i=2 ai)(

∑n
j=1 bj)

=
∑n
j=1 a1bj +

∑m
i=2

∑n
j=1 aibj

=
∑m
i=1

∑n
j=1 aibj .

�

Definition 2.1.6. Let R be a ring. For r, s ∈ R, define r − s = r + (−s).
A subset S ⊆ R is a subring if it is a ring with respect to the addition, sub-

traction, and multiplication on R.

Example 2.1.7. nZ is a subring of Z.

Example 2.1.8. Let S = { ( r 0
0 r ) ∈M2(R)| r ∈ R} ⊂ M2(R). Then S is a subring

of M2(R).

Remark 2.1.9. If S is a subring of R, then 0S = 0R as follows: s ∈ S =⇒ 0R =
s − s ∈ S, and since 0R is an additive identity on R it is also an additive identity
on S.

Example 2.1.10. Let S = { ( r 0
0 0 ) ∈M2(R)| r ∈ R} ⊂M2(R). Then S is a subring

of M2(R). Note that S and M2(R) are both rings with identity, but they do not
have the same identity.

Proposition 2.1.11 (Subring Test). Let R be a ring and S ⊆ R a subset. Then
S is a subring of R if and only if it satisfies the following conditions:
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(1) S 6= ∅;
(2) S is closed under the subtraction from R;
(3) S is closed under the multiplication from R.

Proof. Exercise: the missing axioms for S are inherited from R. �

Remark 2.1.12. In the subring test, item (2) can be replaced with the following:

(2′) S is closed under addition and additive inverses.

Example 2.1.13. When f : R → S is a ring homomorphism and the rings R and
S both have identity, we may have f(1R) 6= 1S . For example, this is so for the ring
homomorphism f : R→M2(R) given by f(r) = ( r 0

0 0 ).

Example 2.1.14. Products/coproducts of rings; see Example 1.2.4. Let {Rλ}λ∈Λ

be a non-empty set of non-zero rings.
The product

∏
λRλ is a ring with addition and multiplication defined coordi-

natewise: (rλ) + (r′λ) = (rλ + r′λ) and (rλ)(r′λ) = (rλr
′
λ).

The product
∏
λRλ has identity if and only if each Rλ has identity. ⇐= : If

1Rλ ∈ Rλ is a multiplicative identity, then the sequence (1Rλ) is a multiplicative
identity for

∏
λRλ. =⇒ : If (rλ) is a multiplicative identity for

∏
λRλ, then rλ is

a multiplicative identity for Rλ.
Similarly, the product

∏
λRλ is commutative if and only if each Rλ is commu-

tative.
The coproduct

∐
λRλ is a ring with addition and multiplication defined coordi-

natewise: (rλ) + (r′λ) = (rλ + r′λ) and (rλ)(r′λ) = (rλr
′
λ). The coproduct

∐
λRλ has

identity if and only if Λ is finite and each Rλ has identity. The coproduct
∐
λRλ

is commutative if and only if each Rλ is commutative. The coproduct
∐
λRλ is a

subring of
∏
λRλ.

Definition 2.1.15. LetR and S be rings. A function f : R→ S is a homomorphism
of rings or ring homomorphism if it respects the addition and multiplication on the
rings: for all r, r′ ∈ R, we have f(r + r′) = f(r) + f(r′) and f(rr′) = f(r)f(r′).

If R and S are rings with identity, then f is a homomorphism of rings with
identity if it is a ring homomorphism and f(1R) = 1S .

Proposition 2.1.16. If f : R → T is a ring homomorphism, then Im(f) is a
subring of T .

Proof. Exercise: use the Subring Test. �

Definition 2.1.17. Let R be a ring. A subset I ⊆ R is a (two-sided) ideal if
(I,+) 6 (R,+) and, for all a ∈ I and all r ∈ R, we have ar ∈ I and ra ∈ I.
In particular, when I is a two-sided ideal of R, the quotient R/I is a well-defined
additive abelian group.

Example 2.1.18. For each integer n, the set nZ is a two-sided ideal in Z.
In Q, the set Z is a subring; it is not an ideal.
Every ring has the trivial ideals: 0 = {0R} and R.
The only ideals of Q are {0} and Q. More generally, if k is a field, then the

only two-sided ideals of k are {0} and k. (Exercise.)

Remark 2.1.19. If I is an ideal in R, then 0R ∈ I because s ∈ S =⇒ 0R =
s− s ∈ S.
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Proposition 2.1.20 (Ideal Test). Let R be a ring and I ⊆ R a subset. Then I is
an ideal of R if and only if it satisfies the following conditions:

(1) I 6= ∅;
(2) I is closed under the subtraction from R;
(3) For all r ∈ R and all a ∈ I, we have ra ∈ I and ar ∈ I.

Proof. Like the Subring Test. �

Remark 2.1.21. In the ideal test, item (2) can be replaced with the following:

(2′) I is closed under addition and additive inverses.

Proposition 2.1.22. If f : R → T is a ring homomorphism, then Ker(f) is an
ideal of R.

Proof. Exercise: use the Ideal Test. �

Proposition 2.1.23. Let R be a ring and I ⊆ R a two-sided ideal.

(a) Define a product on the quotient R/I by the formula r · s = rs. This is
well-defined and makes R/I into a ring.

(b) If R is commutative, then so is R/I.
(c) If R has identity 1R, then R/I has identity 1R/I = 1R.
(d) The natural map π : R→ R/I given by r 7→ r is a surjective ring homomor-

phism with kernel I.
(e) If R has identity, then π is a homomorphism of rings with identity.

Proof. (a) If r = r′ and s = s′, then r − r′, s− s′ ∈ I and so

rs− r′s′ = rs− r′s+ r′s− r′s′ = (r − r′)︸ ︷︷ ︸
∈I

s

︸ ︷︷ ︸
∈I

+ r′ (s− s′)︸ ︷︷ ︸
∈I︸ ︷︷ ︸
∈I︸ ︷︷ ︸

∈I

∈ I

which implies rs = r′s′. The remaining properties of R/I follow from the corre-
sponding properties for R. For instance, once half of distributivity:

r(s+ t) = r(s+ t) = rs+ rt = rs+ rt.

(b) Exercise.
(c) 1r = 1r = r etc.
(d) π is a well-defined surjective additive abelian group homomorphism by

Example 1.1.2.9(a). And it is a ring homomorphism because π(rs) = rs = r · s =
π(r)π(s).

(e) 1R/I = 1R = π(1R). �

Example 2.1.24. We have Z/nZ ∼= Zn and R/0 ∼= R and R/R ∼= 0.

Proposition 2.1.25 (First Isomorphism Theorem). Let f : R → S be a ring ho-
momorphism.

(a) The function f : R/Ker(f) → Im(f) given by r 7→ f(r) is a well-defined
isomorphism of rings and so Im(f) ∼= R/Ker(f).

(b) f is a monomorphism if and only if Ker(f) = {0R}.

Proof. Exercise: f comes from Fact 1.2.10. Check that it is a ring homomor-
phism. �



2.2. OPERATIONS ON IDEALS 9

Here is the ideal correspondence for quotients, and the third isomorphism the-
orem.

Theorem 2.1.26. Let R be a ring and I ⊆ R an ideal. Let π : R → R/I be the
ring epimorphism π(r) = r. There is a 1-1 correspondence

{ideals J ⊆ R | I ⊆ J} ←→ {ideals J ′ ⊆ R/I}

given by

J 7−→ J/I

π−1(J ′)←− [ J ′

If J is an ideal of R such that I ⊆ J , then the function τ : R/I → R/J given
by τ(r + I) = r + J is a well-defined ring epimorphism with Ker(τ) = J/I; in

particular, there is a (well-defined) ring isomorphism (R/I)/(J/I)
∼=−→ R/J .

Proof. Exercise: use Facts 1.2.11 and 1.2.15. �

Example 2.1.27. Let n > 2. The ideals of Z/nZ are exactly the sets of the form
mZ/nZ = {a | m

∣∣a} for some m
∣∣n. And (Z/nZ)/(mZ/nZ) ∼= Z/mZ.

2.2. Operations on Ideals

Here are three important ways to create ideals.

Proposition 2.2.1. If {Iλ}λ∈Λ is a non-empty set of ideals in a ring R, then
∩λ∈ΛIλ is an ideal in R. In particular, if I, J are ideals of R, then so is I ∩ J .

Proof. Exercise: use the ideal test. �

Example 2.2.2. If m,n ∈ Z, then mZ ∩ nZ = lcm(m,n)Z.

Definition 2.2.3. Let X be a subset of a ring R. The ideal generated by X is the
intersection of all ideals of R containing X; it is denoted (X)R. If X = {x1, . . . , xn},
then we write (X)R = (x1, . . . , xn)R.

Proposition 2.2.4. Let X be a subset of a ring R.

(a) The set (X)R is an ideal of R that contains X.
(b) (X)R is the smallest ideal of R containing X.
(c) Assume that R has identity. Then

(X)R = {finite sums of the form
∑
i aixibi | ai, bi ∈ R and xi ∈ X}.

In particular, if x ∈ R, then

(x)R = {finite sums of the form
∑
j ajxbj | aj , bj ∈ R}.

(d) Assume that R is commutative and has identity. Then

(X)R = {finite sums of the form
∑
i cixi | ci ∈ R and xi ∈ X}.

In particular, if x ∈ R, then

(x)R = {cx | c ∈ R}.
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Proof. (a) The set of all ideals of R containing X is non-empty because R is
an ideal of R containing X. Now apply Proposition 2.2.1.

(b) If J is an ideal of R containing X, then J is one of the ideals in the
intersection defining (X)R. Hence (X)R ⊆ J .

(c) For the first equality, set

I = {finite sums of the form
∑
i

∑
j aixibi | ai, bi ∈ R and xi ∈ X}.

We need to show (X)R = I.
“⊇” For each ideal J containing X, the fact that J is an ideal implies that

every finite sum of the form
∑
i

∑
j aixibi is in J . In particular, every such sum is

in the intersection of all the ideals of R containing X. Hence, the containment.
“⊆” It is straightforward to show that I is an ideal of R. Because R has identity,

we have X ⊆ I. Hence, I is one of the ideals in the intersection defining (X)R, and
so (X)R ⊆ I.

The second equality is a special case of the first one.
(d) The first equality follows from part (c) and the following computation:∑

i

∑
j ai,jxibi,j =

∑
i

∑
j(ai,jbi,jxi) =

∑
i(
∑
j ai,jbi,j︸ ︷︷ ︸
ci

)xi.

The first equality uses the commutativity of R, and the second one uses the gener-
alized distributive law from Proposition 2.1.5(h).

The second equality is a special case of the first one. �

Example 2.2.5. If m,n ∈ Z, then (m,n)Z = gcd(m,n)Z.

Definition 2.2.6. Let I1, . . . , In be ideals of a ring R. Their sum is∑
j Ij = I1 + · · ·+ In = {

∑
j aj | aj ∈ Ij , j = 1, . . . , n}.

In particular, for ideals I and J , we set

I + J = {a+ b | a ∈ I, b ∈ J}.

Proposition 2.2.7. Let I1, . . . , In be ideals of a ring R.

(a) The sum
∑
j Ij is an ideal of R.

(b) The sum
∑
j Ij contains Ik for each k = 1, . . . , n

(c) We have
∑
j Ij = (∪jIj)R. In particular,

∑
j Ij is the smallest ideal of R

containing ∪jIj.
(d) If Ij = (Sj)R for j = 1, . . . , n, then

∑
j Ij = (∪jSj)R, so

∑
j Ij is the

smallest ideal of R containing ∪jSj.
(e) For ideals I, J,K in R, we have (I + J) +K = I + J +K = I + (J +K).
(f) If σ ∈ Sn, then

∑
j Ij =

∑
j Iσ(j).

Proof. (a) Use the ideal test and the generalized distributive law.
(b) Use the fact that 0R ∈ Ik for each k.
(c) Let z ∈

∑
j Ij . Then there exist aj ∈ Ij such that z =

∑
j aj . Each

aj ∈ ∪jIj ⊆ (∪jIj)R, so the fact that (∪jIj)R is closed under sums implies z =∑
j aj ∈ (∪jIj)R. Hence

∑
j Ij ⊆ (∪jIj)R.

For the reverse containment, note that
∑
j Ij ⊇ Il for each l, and therefore∑

j Ij ⊆ ∪jIj . Since (∪jIj)R is the smallest ideal containing ∪jIj , it follows that∑
j Ij ⊇ (∪jIj)R.

The second statement follows from the first one by Proposition 2.2.4(b).
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(d)–(f) Exercise. �

Example 2.2.8. In Z, we have mZ + nZ = (m,n)Z = gcd(m,n)Z.

Definition 2.2.9. Let I1, . . . , In be ideals of a ring R. Their product is∏
j Ij = I1 · · · In

= {finite sums of elements of the form a1 · · · an | aj ∈ Ij , j = 1, . . . , n}.
In particular, for ideals I and J , we set

IJ = {finite sums of elements of the form ab | a ∈ I, b ∈ J}.
Starting with I0 = R and I1 = I we define In inductively for n > 2 as In = IIn−1.

Remark 2.2.10. Note that
∏
j Ij is not the cartesian product.

Proposition 2.2.11. Let I1, . . . , In be ideals of a ring R with n > 2.

(a) The product
∏
j Ij is an ideal of R contained in

⋂
j Ij.

(b) We have
∏
j Ij = ({a1 · · · an | aj ∈ Ij , j = 1, . . . , n})R. In particular,

∏
j Ij

is the smallest ideal of R containing the set {a1 · · · an | aj ∈ Ij , j = 1, . . . , n}.
(c) If R is commutative and Ij = (Sj)R for j = 1, . . . , n, then∏

j

Ij = ({a1 · · · an | aj ∈ Sj , j = 1, . . . , n})R.

In particular,
∏
j Ij is the smallest ideal of R containing the set

{a1 · · · an | aj ∈ Sj , j = 1, . . . , n}.
(d) For ideals I, J,K in R, we have (IJ)K = I(JK) = IJK.
(e) If J is an ideal of R, then J(

∑
j Ij) =

∑
j(JIj) and (

∑
j Ij)J =

∑
j(IjJ).

(f) If R is commutative and σ ∈ Sn, then
∏
j Ij =

∏
j Iσ(j).

Proof. (a) Use the ideal test and the generalized distributive law.
(b) Set J = ({a1 · · · an | aj ∈ Ij , j = 1, . . . , n})R. Let cj ∈ Ij for j = 1, . . . , n.

Then

c1 · · · cn ∈ {a1 · · · an | aj ∈ Ij , j = 1, . . . , n}
⊆ ({a1 · · · an | aj ∈ Ij , j = 1, . . . , n})R = J.

Since ({a1 · · · an | aj ∈ Ij , j = 1, . . . , n})R is closed under finite sums, it follows
that every finite sum of elements of the form c1 · · · cn is in J . From the definition
of
∏
j Ij , we conclude

∏
j Ij ⊆ J .

On the other hand,
∏
j Ij is an ideal that contains each product c1 · · · cn with

cj ∈ Ij . Since J is the smallest such ideal, it follows that
∏
j Ij ⊇ J .

The second statement follows from the first one by Proposition 2.2.4(b).
(c) Exercise.
(d) Check (IJ)K ⊆ IJK directly from the definitions using associativity of

multiplication. Check (IJ)K ⊇ IJK by showing that every generator of IJK is in
(IJ)K. The equality I(JK) = IJK is verified similarly.

(e) To show J(
∑
j Ij) ⊆

∑
j(JIj), show that every generator of J(

∑
j Ij) is in∑

j(JIj). For J(
∑
j Ij) ⊇

∑
j(JIj), show directly that every element of

∑
j(JIj)

is in J(
∑
j Ij) using the (generalized) distributive law. The equality (

∑
j Ij)J =∑

j(IjJ) is verified similarly.

(f) This follows similarly from the (generalized) commutative law. �
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Example 2.2.12. If m,n ∈ Z, then (mZ)(nZ) = mnZ.

2.3. Prime Ideals and Maximal Ideals

Definition 2.3.1. Let R be a ring and P ⊆ R an ideal. P is prime if P 6= R and,
for all ideals I, J ⊆ R, if IJ ⊆ P , then either I ⊆ P or J ⊆ P .

Example 2.3.2. 0Z is a prime ideal of Z. If 0 6= m ∈ Z, then mZ is a prime ideal
of Z if and only if m is a prime number. (These are the prototypes.)

Proposition 2.3.3. Let R be a ring and P ( R an ideal.

(a) Assume that, for all a, b ∈ R, if ab ∈ P , then either a ∈ P or b ∈ P . Then
P is prime.

(b) If R is commutative and P is prime, then, for all a, b ∈ R, if ab ∈ P , then
either a ∈ P or b ∈ P .

Proof. (a) Let I, J ⊆ R be ideals such that IJ ⊆ P and I 6⊆ P . We need to
show that J ⊆ P . Let a ∈ I − P . For all b ∈ J , we have ab ∈ IJ ⊆ P ; since a 6∈ P ,
our hypothesis implies b ∈ P . Thus, J ⊆ P .

(b) Let a, b ∈ R and assume that ab ∈ P . Since P is an ideal, we have
(ab)R ⊆ P . Since R is commutative, we have [(a)R][(b)R] = (ab)R ⊆ P by Propo-
sition 2.2.11(c). Since P is prime, either (a)R ⊆ P or (b)R ⊆ P , and so either
a ∈ P or b ∈ P . �

Definition 2.3.4. An integral domain is a non-zero commutative ring with identity
such that, for all 0 6= a, b ∈ R we have ab 6= 0.

Example 2.3.5. Z is an integral domain. Every field is an integral domain, e.g.,
Q, R and C.

Proposition 2.3.6. Let R be a non-zero commutative ring with identity. An ideal
I ⊆ R is prime if and only if R/I is an integral domain.

Proof. “ =⇒ ” Assume that I is prime. Then I ( R and so R/I 6= 0. Also,
because R is commutative with identity, so is R/I. Let 0 6= a + I, b + i ∈ R/I.
Then a, b 6∈ I and so ab 6∈ I because I is prime. Hence (a+ I)(b+ I) = ab+ I 6= 0
and so R/I is an integral domain.

“⇐= ” Assume R/I is an integral domain. In particular, we have R/I 6= 0 and
so I ( R. Let a, b ∈ R− P . Then 0 6= a+ I, b+ I ∈ R/I. Since R/I is an integral
domain, we have 0 6= (a + I)(b + I) = ab + I and so ab 6∈ I. Proposition 2.3.3(a)
implies that I is prime. �

Definition 2.3.7. An ideal m ⊆ R is maximal if m 6= R and m is a maximal
element in the set of all proper ideals, partially ordered by inclusion. In other
words, m is maximal if and only if m 6= R and, for all ideals I ⊆ R, if m ⊆ I, then
either I = m or I = R.

Example 2.3.8. 0Z and 6Z are not maximal ideals of Z because 0Z ( 6Z ( 3Z (
Z. In fact, mZ is maximal if and only if m is prime.

Here’s something important that does not follow from the “usual” axioms of
set theory. See Hungerford pp. 12-15 for a discussion.

The Axiom of Choice. The Cartesian product of a family of non-empty sets
indexed over a non-empty set is non-empty.
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For an important reformulation, we need some terminology.

Definition 2.3.9. A partially ordered set is a non-empty set A with a relation 6
(called a partial ordering on A) which is reflexive (for all a ∈ A, we have a 6 a),
transitive (for all a, b, c ∈ A, if a 6 b and b 6 c, then a 6 c) and antisymmetric (for
all a, b ∈ A, if a 6 b and b 6 a, then a = b).

Example 2.3.10. If A ⊆ R, then A is a partially ordered set under the usually
ordering 6.

If S is a set and A is a set of subsets of S, then A is a partially ordered set
under inclusion.

Definition 2.3.11. Assume that A is a partially ordered set. Two elements a, b ∈ A
are comparable if either a 6 b or b 6 a. An element c ∈ A is maximal in A if, for
every a ∈ A which is comparable to c, we have a 6 c. If ∅ 6= B ⊆ A, then an upper
bound of B in A is an element a ∈ A such that, for all b ∈ B, we have b 6 a. B is
a chain if every two elements in B are comparable.

Assuming the “usual” axioms of set theory, the following is equivalent to the
Axiom of Choice. For a proof, consult a book on set theory.

Theorem 2.3.12 (Zorn’s Lemma). Let A be a non-empty partially ordered set
such that every chain in A has an upper bound in A. Then A contains a maximal
element.

Here is a useful application of Zorn’s Lemma.

Proposition 2.3.13. Let R be a non-zero ring with identity. For every ideal I ( R,
there is a maximal ideal m ( R such that I ⊆ m. In particular, R has at least one
maximal ideal.

Proof. Fix an ideal I ( R. We use Zorn’s Lemma to show that I is contained
in some maximal ideal m of R. Let A denote the set of all ideals J such that
I ⊆ J ( R. Partially order A by inclusion. Since I 6= R, we have I ∈ A and so
A 6= ∅. In order to be able to invoke Zorn’s lemma, we need to show that every
chain C in A has an upper bound in A.

Let K = ∪J∈CJ . We will be done once we show that K is an ideal of R such
that K 6= R. Indeed, then K ⊇ J ⊇ I for all J ∈ C and so K ∈ A and K is an
upper bound for C in A.

We use the ideal test to show that K is an ideal of R. Since 0 ∈ I ⊆ K, we
have K 6= ∅. Let a, a′ ∈ K = ∪J∈CJ . Then there are J, J ′ ∈ C such that a ∈ J
and a′ ∈ J ′. Since C is a chain, either J ⊆ J ′ or J ′ ⊆ J . Assume without loss of
generality that J ⊆ J ′. Then a, a′ ∈ J ′ and so a− a′ ∈ J ′ ⊆ K since J ′ is an ideal.

Now let r ∈ R and b ∈ K. There is an ideal J ′′ ∈ C such that b ∈ J ′′. Since J ′′

is an ideal, we have rb ∈ J ′′ ⊆ K. Similarly, we see that br ∈ K, and so K is an
ideal.

Suppose K = R. Then 1R ∈ K. It follows that 1R ∈ J ′′′ for some J ′′′ ∈ C and
so J ′′′ = R by an exercise. This contradicts the fact that J ′′′ ∈ C.

Zorn’s Lemma implies that C has a maximal element m. It is straightforward
to check that m is a maximal ideal of R that contains I.

For the final statement, note that (0)R 6= R and so (0)R is contained in some
maximal ideal m′. Hence, R has at least one maximal ideal. �
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Proposition 2.3.14. Let R be a non-zero commutative ring with identity.

(a) An ideal I is maximal if and only if R/I is a field.
(b) Every maximal ideal of R is prime.

Proof. (a) If I is maximal, then there are no ideals J such that I ( J ( R.
The ideal correspondence shows that R/I has only two ideals, I/I and R/I. Hence,
R/I is a field by an exercise.

Conversely, assume thatR/I is a field and let J be an ideal such that I ⊆ J ⊆ R.
Hence, J/I is an ideal of R/I. Since R/I is a field, the same exercise shows that
R/I has only two ideals, I/I and R/I. Hence, either J/I = I/I or J/I = R/I.
That is, either J = I or J = R, so I is maximal.

(b) If m ( R is a maximal ideal, then R/m is a field. Hence, R/m is an integral
domain and so m is prime. �

Proposition 2.3.15. Let R be a non-zero commutative ring with identity. Let
I ( R be an ideal and let π : R→ R/I be the ring epimorphism π(r) = r.

(a) There is a 1-1 correspondence

{prime ideals P ( R | I ⊆ P} ←→ {prime ideals P ′ ( R/I}

given by

P 7−→ P/I

π−1(P ′)←− [ P ′.

In other words, the ideal J/I ⊆ R/I is prime if and only if J is a prime ideal
of R.

(b) There is a 1-1 correspondence

{maximal ideals m ( R | I ⊆ m} ←→ {maximal ideals m′ ( R/I}

given by

m 7−→ m/I

π−1(m′)←− [ m′.

In other words, the ideal J/I ⊆ R/I is maximal if and only if J is a maximal
ideal of R.

Proof. (a) Using the ideal correspondence, it suffices to verify the last state-
ment. The ideal J/I ⊆ R/I is prime if and only if (R/I)/(J/I) ∼= R/J is an integral
domain, and this is so if and only if J is prime. The isomorphism comes from the
Third Isomorphism Theorem.

(b) As in part (a), changing “prime” to “maximal” and “integral domain” to
“field”. �

Example 2.3.16. The prime ideals of Z/42Z are 2Z/42Z, 3Z/42Z, 7Z/42Z because
42 = (2)(3)(7). These are exactly the maximal ideals of Z/42Z as well.
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2.4. Quotient Fields

It is straightforward to show that if R is isomorphic to a non-zero subring of a
field, then R is an integral domain. In this section, we prove the converse. To do
this, we construct the field of quotients of an integral domain. It is modeled on the
construction of Q from Z. The elements of Q are of the form r/s where r, s ∈ Z
and s 6= 0.

Construction 2.4.1. Let R be an integral domain and consider the Cartesian
product R×(R−{0}). Define a relation on R×(R−{0}) as follows: (r, s) ∼ (r′, s′)
if and only if rs′ = r′s. This is an equivalence relation on R×(R−{0}), and the set
of equivalence classes is denoted Q(R). The equivalence class of an element (r, s) in
Q(R) is denoted r/s or r

s . If 0 6= t ∈ R, then the definition implies (r, s) ∼ (rt, st);

this translates to the cancellation formula rt
st = r

s .
For elements r/s, t/u ∈ Q(R), set

r

s
+
t

u
=
ru+ ts

su
and

r

s

t

u
=
rt

su
.

Proposition 2.4.2. With notation as in Construction 2.4.1:

(a) In Q(R), we have r/s = 0/t if and only if r = 0.
(b) In Q(R), we have r/s = t/t if and only if r = s.
(c) Q(R) is a field with 0Q(R) = 0R/1R and 1Q(R) = 1R/1R = r/r and (r/s)−1 =

s/r.
(d) The assignment f : R→ Q(R) given by r 7→ r/1 is a monomorphism of rings

with identity.

Proof. (a) r/s = 0/t if and only if rt = s0 if and only if r = 0; the last
equivalence is from the fact that R is an integral domain.

(b) r/s = t/t if and only if rt = st if and only if r = s; the last equivalence is
by cancellation.

(c) The main point is to show that the addition and multiplication on Q(R) are
well-defined; the other field-axioms are then easily verified. Assume that r/s = r′/s′

and t/u = t′/u′, that is, rs′ = r′s and tu′ = t′u. Then

ru+ ts

su
=

(ru+ ts)s′u′

(su)s′u′
=
rs′uu′ + tu′ss′

ss′uu′
=
r′suu′ + t′uss′

ss′uu′

=
(r′u′ + t′s)us

(u′s′)us
=
r′u′ + t′s

u′s′

so addition is well-defined. The equality rt
su = r′t′

s′u′ is even easier to verify, showing
that multiplication is well-defined.

We have the correct additive identity because

r

s
+

0

1
=
r1 + s0

s1
=
r

s

and the multiplicative identity is even easier. The other axioms showing that Q(R)
is a commutative ring with identity are straightforward but tedious.

To see that Q(R) is non-zero, we need to show 0/1 6= 1/1: this follows from
parts (a) and (c).

Finally, if r/s 6= 0/1 then r 6= 0 and so s/r ∈ Q(R). It is straightforward to
check that r

s
s
r = 1

1 , and so (r/s)−1 = s/r.
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(d) The function is well-defined. It is straightforward to show that it is a
homomorphism of rings with identity: for instance

r

1
+
r′

1
=
r1 + 1r′

1 · 1
=
r + r′

1
.

The fact that f is a monomorphism, follows from part (a). �

We generally identify R with its image in Q(R).

Example 2.4.3. Q(Z) ∼= Q.

2.5. Factorization

Here is one way that integral domains are like fields. Note that we are not
assuming that a has a multiplicative inverse.

Proposition 2.5.1. Let R be an integral domain. If a, b, c ∈ R such that ab = ac,
then either a = 0 or b = c.

Proof. ab = ac implies a(b − c) = 0. Since R is an integral domain, either
a = 0 or b− c = 0. �

Definition 2.5.2. Let R be a non-zero commutative ring with identity. An element
u ∈ R is a unit if it has a multiplicative inverse in R. An element p ∈ R is prime
if it is a non-zero nonunit and (p)R is a prime ideal in R. An element q ∈ R is
irreducible if it is a non-zero nonunit and, q has only trivial factors, that is, for all
a, b ∈ R, if q = ab then either a or b is a unit.

For elements a, b ∈ R, we say a is a factor of b or a divides b if there exists
c ∈ R such that b = ac; when a divides b, we write a

∣∣b.
An ideal I is principal if it can be generated by a single element, that is, if

there exists an element r ∈ R such that I = (r)R.

Example 2.5.3. The units in Z are ±1. The prime elements are exactly the prime
numbers (positive and negative), and same for the irreducible elements.

In a field, every non-zero element is a unit. Hence, a field has no prime elements
and no irreducible elements.

In Z/(6)Z, the units are 1, 5 = −1; the prime elements are 2, 3, 4 = −2. The
element 2 is not irreducible because 2 = 2 · 4. The element 3 is not irreducible
because 3 = 3 · 3. The element 4 is not irreducible because 4 = 2 · 2.

Exercise 2.5.4. Let R be a non-zero commutative ring with identity, and let
a, b ∈ R. The following conditions are equivalent:

(a) a
∣∣b;

(b) b ∈ (a)R;
(c) (b)R ⊆ (a)R.

Proposition 2.5.5. Let R be a non-zero commutative ring with identity. Let p ∈ R
be a non-zero nonunit. Then p is prime if and only if, for all a, b ∈ R, if p

∣∣ab, then

p
∣∣a or p

∣∣b.
Proof. From the characterization of prime ideals from Proposition 2.3.3: (p)R

is prime if and only if for all a, b ∈ R, if ab ∈ (p)R, then either a ∈ (p)R or b ∈ (p)R.
Now use Exercise 2.5.4. �
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Proposition 2.5.6. Let R be an integral domain. If p ∈ R is prime, then p is
irreducible.

Proof. Assume that p is prime, and suppose p = ab for some a, b ∈ R. Then
p
∣∣ab, so the fact that p is prime implies p

∣∣a or p
∣∣b. Assume p

∣∣a; we need to show

that b is a unit. Since p
∣∣a and a

∣∣p, we have (a)R = (p)R = (ab)R. Since R is an
integral domain, an exercise implies that b is a unit. �

Remark 2.5.7. Example 2.5.3 shows that the assumption “R is an integral do-
main” is necessary: In Z/(6)Z, the element 2 is prime but not irreducible.

Example 2.5.8. Not every irreducible element is prime, even in an integral domain.
To see this, let R[x2, x3] be the set of polynomials of the form a0 + a2x

2 + a3x
3 +

a4x
4 + · · · with a0, a2, a3, a4, . . . ∈ R. That is, R[x2, x3] is the set of all polynomials

with real-number coefficients and zero linear term. This is an integral domain. (Use
the subring test to show that R[x2, x3] is a subring of the ring of polynomials R[x]
with real number coefficients. Because R[x] is an integral domain, it follows readily
that R[x2, x3] is also an integral domain. We will deal with polynomial rings more
thoroughly below.) In R[x2, x3] the element x2 is irreducible, but it is not prime.
To see that x2 is not prime, note that x2x4 = x6 = x3x3 and so x2

∣∣x3x3; however,

x2 - x3 because x 6∈ R[x2, x3].

Definition 2.5.9. Let R be an integral domain. If every non-zero nonunit of R can
be written as a (finite) product of prime elements, then R is a unique factorization
domain or UFD for short.

Example 2.5.10. Z is a UFD. A field k is a UFD.

Proposition 2.5.11. Let R be an integral domain. Prime factorization in R is
unique up to order and multiplication by units: Let p1, . . . , pk, q1, . . . , qm be primes
elements of R such that p1 · · · pk = q1 · · · qm, then m = k and there is a permutation
σ ∈ Sk and there are units u1, . . . , uk in R such that pi = uiqσ(i) for i = 1, . . . , k.

Proof. We proceed by induction on k.
Base case: k = 1. We need to show m = 1, so suppose m > 1. Then

p1 = q1 · · · qm and so p1

∣∣qi for some i because p1 is prime. Reorder the qj to

assume p1

∣∣q1. Since q1

∣∣q1 · · · qm = p1, we also have q1

∣∣p1. Hence, we have (q1)R =
(p1)R = (q1q2 · · · qm)R and so q2 · · · qm is a unit. This implies that each qj is a
unit, contradicting the fact that qj is prime.

Induction step. Assuming that p1 · · · pk = q1 · · · qm and k > 2, we have
p1

∣∣p1 · · · pk and so p1

∣∣q1 · · · qm. Since p1 is prime, p1

∣∣qj for some j. As above,

reorder the qi to assume p1

∣∣q1, and use the fact that q1 is prime to conclude that
q1 = u1p1 for some unit u1. It follows that p2 · · · pk = u1q2 · · · qm, so the rest of the
result follows by induction. �

Proposition 2.5.12. If R is a UFD, then every irreducible element of R is prime.

Proof. Fix an irreducible element x ∈ R. Since R is a UFD, we can write
x = p1 · · · pk where each pi ∈ R is prime. In particular, no pi is a unit. Suppose
k > 1. Then x = p1(p2 · · · pk). Since x is irreducible, either p1 is a unit or p2 · · · pk
is a unit. This contradicts the fact that no pi is a unit, so we must have k = 1.
That is x = p1 is prime. �
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Here we reconcile our definition of UFD with Hungerford’s definition, which is
condition (iii).

Proposition 2.5.13. Let R be an integral domain. TFAE.

(i) R is a UFD;
(ii) Every irreducible element of R is prime, and every non-zero nonunit of R

can be written as a finite product of irreducible elements;
(iii) Every non-zero nonunit of R can be written as a finite product of irreducible

elements and such a factorization is unique up to order and multiplication
by units.

Proof. (ii) =⇒ (i) Definition of UFD.
(i) =⇒ (iii) This follows from the definition of UFD and Propositions 2.5.6

and 2.5.11.
(iii) =⇒ (ii) It suffices to show that every irreducible element x ∈ R is prime.

Suppose that a, b ∈ R and x
∣∣ab. We need to show that x

∣∣a or x
∣∣b. There is an

element c ∈ R such that ab = xc. If a = 0, then a = 0 = x0 =⇒ x
∣∣a. So assume

a 6= 0, and similarly assume b 6= 0. Note that this implies c 6= 0.
If a is a unit, then b = x(a−1c) =⇒ x

∣∣b. So, assume that a is not a unit, and

similarly assume that b is not a unit. If c is a unit, then x = (c−1a)b; since x is
irreducible, either c−1a is a unit or b is a unit. That is, either a is a unit or b is a
unit, a contradiction.

Since a, b, c are non-zero nonunits, there are irreducible elements

a1, . . . , ak, b1, . . . , bl, c1, . . . , cm ∈ R

such that a = a1 · · · ak, b = b1 · · · bl and c = c1 · · · cm. The equation xc = ab implies

xc1 · · · cm = a1 · · · akb1 · · · bl.

The uniqueness condition for factorizations implies that x is a unit multiple of one
of the elements a1, . . . , ak, b1, . . . , bl. If x = ubi, then

b = b1 · · · bl = u−1b1 · · · bi−1(ubi)bi+1 · · · bl = u−1b1 · · · bi−1xbi+1 · · · bl
and so x

∣∣b. Similarly, if x = uaj , then x
∣∣a. Hence x is prime. �

Example 2.5.14. Factorization into products of irreducibles is not unique if R is
not a UFD. For example, in the ring R[x2, x3], the elements x2, x3 are irreducible
and x2x2x2 = x3x3. Hence, the number of irreducible factors need not be the same,
and the factors need not be unit multiples of each other.

Definition 2.5.15. Let R be a UFD, and let r1, . . . , rn ∈ R, not all zero. An
element r ∈ R is a greatest common divisor (GCD) of {r1, . . . , rn} if (a) r

∣∣ri for

each i, and (b) if s ∈ R and s
∣∣ri for each i, then s

∣∣r; we write gcd(r1, . . . , rn) = [r].
We say that r1, . . . , rn are relatively prime if gcd(r1, . . . , rn) = [1].

An element t ∈ R is a least common multiple (LCM) of {r1, . . . , rn} if (a) ri
∣∣t for

each i, and (b) if s ∈ R and ri
∣∣s for each i, then t

∣∣s; we write lcm(r1, . . . , rn) = [t].

Remark 2.5.16. Let R be a commutative ring with identity, and let R× denote
the set of units of R. It is straightforward to show that R× is an abelian group
under multiplication. In particular, if k is a field, then k× = k − {0}.

Lemma 2.5.17. Let R be a UFD, and let r0, . . . , rd ∈ R, not all zero.
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(a) There are prime elements p1, . . . , pn ∈ R and elements u0, . . . , ud ∈ R×∪{0}
and ki,j ∈ N for i = 0, . . . , d and j = 1, . . . , n such that (1) [pj ] 6= [pj′ ] when

j 6= j′, and (2) ri = uip
ki,1
1 · · · pki,nn for each i. If ri = 0, we may take ui = 0

and ki,j = 0 for each j.
(b) With notation as in part (a), assume r0, r1 6= 0. Then r0

∣∣r1 if and only if
k0,j 6 k1,j for each j.

(c) With notation as in part (a), assume r0 6= 0. Then r0 is a unit if and only
if k0,j = 0 for each j.

(d) With notation as in part (a), set mj = mini{ki,j | ri 6= 0}. Then the element
r = pm1

1 · · · pmnn ∈ R is a GCD for {r0, . . . , rd}.
(e) With notation as in part (a), set Mj = maxi{ki,j}. Then the element t =

pM1
1 · · · pMn

n ∈ R is an LCM for {r0, . . . , rd}.

Proof. (a) Bookkeeping nightmare: Use the existence of prime factorizations
and the uniqueness of prime factorizations.

(b) “ =⇒ ” Assume r0

∣∣r1. We will show that k0,1 6 k1,1, by induction on k0,1.
(The other cases follow by commutativity of multiplication.)

The base case k0,1 = 0 is straightforward because k1,1 > 0.
So, assume that k0,1 > 1.
We will first show that k1,1 > 1. Our assumption implies p1

∣∣r0, and since r0

∣∣r1,

this implies p1

∣∣r1. Since p1 is prime, this implies p1

∣∣u1 or p1

∣∣pk1,jj for some j. Since

u1 is a unit, we have p1 - u1, and so p1

∣∣pk1,jj for some j. Then p
k1,j
j is not a unit,

and so k1,j > 1. It follows that p1

∣∣pj . Since pj is prime, it is irreducible, so its only
factors are the units and the unit multiples of pj . Since p1 is not a unit, we conclude
that [p1] = [pj ] and so 1 = j by assumption. In particular, we have k1,1 > 1.

Let r′0 = u0p
k0,1−1
1 · · · pk0,nn and r′1 = u0p

k1,1−1
1 · · · pk1,nn . Because pr′0 = r0

∣∣r1 =
pr′1, the fact that R is an integral domain implies that r′0 = r′1. By induction, we
conclude k0,1 − 1 6 k1,1 − 1, and so k0,1 6 k1,1.

“⇐= ” Assuming that k0,j 6 k1,j for each j, we have

r′1 = u−1
0 u1p

k1,1−k0,1
1 · · · pk1,n−k0,nn ∈ R

and

r0r
′
1 = u0p

k0,1
1 · · · pk0,nn u−1

0 u1p
k1,1−k0,1
1 · · · pk1,n−k0,nn = u1p

k1,1
1 · · · pk1,nn = r1

and so r0

∣∣r1.

(c) Write 1 = 1 · p0
1 · · · p0

n. Then r0 is a unit if and only if r0

∣∣1 if and only if
k0,j 6 0 for each j by part (b) if and only if k0,j = 0.

(d) First, we need to show that r
∣∣ri for each i. If ri = 0, then ri = 0 = r0 =⇒

t
∣∣ri. So, assume ri 6= 0. By assumption, we have ki,j > mj for each j, and so

part (b) implies r
∣∣ri.

Next, we need to assume that s ∈ R and s
∣∣ri for each i, and show s

∣∣r. Since

at least one ri 6= 0, we know s 6= 0. If s is a unit, then s
∣∣r easily. So, assume that s

is a nonunit. Write s = uql11 · · · q
lh
h where u is a unit, q1, . . . , qh ∈ R are prime and

l1, . . . , lh > 1 and [qj ] 6= [qj′ ] when j 6= j′.

Note that each qj
∣∣s and s

∣∣ri = uip
ki,1
1 · · · pki,nn and so qj

∣∣pj′ for some j′. Because
pj′ is irreducible and qj is not a unit, we conclude that qj is a unit multiple of pj′ .

Thus, after reordering the qj we may write s = vpl11 · · · plnn where v is a unit. Now,
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the assumption

vpl11 · · · plnn = s
∣∣ri = uip

ki,1
1 · · · pki,nn

for each i such that ri 6= 0 implies lj 6 ki,j by part b, and so lj 6 mj . Another
application of part (b) implies s

∣∣r.
(e) Similar to part (d). �

Lemma 2.5.18. Let R be a UFD, and let r0, . . . , rd ∈ R, not all zero.

(a) Let r be a GCD for {r0, . . . , rd}. Then r′ is a GCD for {r0, . . . , rd} if and
only if r′ = ur for some u ∈ R×.

(b) Let t be a LCM for {r0, . . . , rd}. Then t′ is an LCM for {r0, . . . , rd} if and
only if t′ = ut for some u ∈ R×.

(c) With notation as in Lemma 2.5.17(d), the elements r0, . . . , rd are relatively
prime if and only if mj = 0 for each j.

(d) If gcd(r0, . . . , rd) = [r], then ri/r ∈ R for all i and gcd(r0/r, . . . , rd/r) = [1].

Proof. (a) “ =⇒ ” Assume that r′ is a GCD for {r0, . . . , rd}. Since r is also
a GCD for {r0, . . . , rd}, we have r

∣∣r′ and r′
∣∣r. Hence, [r] = [r′] because R is a

domain.
“⇐= ” Assume r′ = ur where u is a unit. Since r

∣∣ri for all i, we have r′ = ur
∣∣ri

for all i. Also, if s
∣∣ri for all i, then s

∣∣r and r
∣∣r′, so s

∣∣r′. Thus r′ is a GCD for
{r0, . . . , rd}.

(b) Similar to part (a).
(c) Let r be as in Lemma 2.5.17(d). Then gcd(r0, . . . , rd) = [r]. If r0, . . . , rd

are relatively prime if and only if gcd(r0, . . . , rd) = [1] if and only if [r] = [1] if and
only if r is a unit if and only if each mj = 0 by Lemma 2.5.17(c).

(d) For each i, we have r
∣∣ri, so we write ri = rr′i for some r′i ∈ R. The

cancellation property shows that r′i is the unique element of R with this property
(in fact, it is the unique element of Q(R) with this property) and so we write
ri/r = r′i.

In the notation of Lemma 2.5.17, write ri = uip
ki,1
1 · · · pki,nn for each i and

r = upm1
1 · · · pmnn ∈ R. Then ri/r = uiu

−1p
ki,1−m1

1 · · · pki,n−mnn for each i. For each
i and j where ri 6= 0, we have ki,j > mj , and so ki,j−mj > 0. And for each j, there
is an i such that ri 6= 0 and ki,j = mj . It follows that min{ki,j−mj | ri/r 6= 0} = 0
for each j, and so p0

1 · · · p0
n = 1 is a GDC for {r0/r, . . . , rd/r}. �

Exercise 2.5.19. Let R be an integral domain with field of fractions Q(R). For
a, b ∈ R with b 6= 0, we have a/b ∈ R if and only if b

∣∣a.

Lemma 2.5.20. Let R be a UFD and set K = Q(R).

(a) Each element of K can be written in the form a/b so that a and b are relatively
prime.

(b) Let 0 6= a/b ∈ K with a, b ∈ R. In the notation of Lemma 2.5.17 write

a = upk11 · · · pknn and b = vpl11 · · · plnn . Then a/b ∈ R if and only if kj > lj for
all j.

(c) Given elements a0
b0
, a1b1 , . . . ,

ad
bd
∈ K, there exists an element 0 6= b ∈ K such

that baibi ∈ R for each i and gcd(ba0b0 , b
a1
b1
, . . . , badbd ) = [1].

(d) Given elements a0, a1, . . . , ad ∈ R such that gcd(a0, a1, . . . , ad) = [1], if c ∈ K
such that cai ∈ R for each i, then c ∈ R.
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Proof. (a) Let c/d ∈ K with c, d ∈ R. If c/d = 0 then c/d = 0/1 has the
desired form. Assume that c/d 6= 0 and let [r] = gcd(c, d). (Essentially, we will
“divide the top and bottom” of c

d by gcd(c, d) in order to put the fraction in the
desired form.) Then a = c/r and b = d/r are elements of R, and Lemma 2.5.18(d)
implies gcd(a, b) = [1]. Furthermore, ab = ar

br = c
d .

(b) Write c = a/b and note that our assumptions imply

c =
a

b
= vw−1pk1−l11 · · · pkn−lnn .

“ ⇐= ” If kj > lj for all j, then kj − lj > 0 and so the above display implies
a/b ∈ R.

“ =⇒ ” Assume c = a/b ∈ R, and suppose that kj < lj for some j. Reorder
the pj to assume that k1 − l1, . . . , kt − lt < 0 and kt+1 − lt+1, . . . , kn − ln > 0. The
displayed equality implies

pl1−k11 · · · plt−ktt c = vw−1p
kt+1−lt+1

t+1 · · · pkn−lnn .

Since p1 divides the left-hand side, it divides the right-hand side. Thus, p1

∣∣pj for
some j > 1, contradicting our assumption [p1] 6= [pj ].

(c) We use the notation of Lemma 2.5.17: There are prime elements p1, . . . , pn ∈
R and elements u0, . . . , ud, v0, . . . , vd ∈ R× ∪ {0} and ki,j , li,j ∈ N for i = 0, . . . , d

and j = 1, . . . , n such that (1) [pj ] 6= [pj′ ] when j 6= j′, and (2) ai = uip
ki,1
1 · · · pki,nn

and bi = vip
li,1
1 · · · pli,nn for each i. If ai = 0, we may take ui = 0, vi = 1 and

ki,j = 0 = li,j for each j. Furthermore,

ai
bi

= uiv
−1
i p

ki,1−li,1
1 · · · pki,n−li,nn ∈ K.

Write Mj = maxi{li,j − ki,j} and set

b = pM1
1 · · · pMn

n .

It follows that we have

b
ai
bi

= uiv
−1
i p

M1+ki,1−li,1
1 · · · pMn+ki,n−li,n

n .

To finish the proof we have two things to show.
baibi ∈ R for each i. For this, it suffices to show Mj + ki,j − li,j > 0 for each j.

This inequality follows from the fact that Mj > li,j − ki,j .
gcd(ba0b0 , b

a1
b1
, . . . , badbd ) = [1]. For this, it suffices to show, for each j, there is an

i such that Mj + ki,j − li,j = 0; then apply Lemma 2.5.18(c). Fix j and choose i
such that Mj = li,j − ki,j . This i works.

(d) Write c = r/s so that gcd(r, s) = [1]. Assume without loss of generality that
r/s 6= 0. There are prime elements p1, . . . , pn ∈ R and elements u0, . . . , ud, v, w ∈
R× ∪ {0} and ki,j , lj ,mj ∈ N for i = 0, . . . , d and j = 1, . . . , n such that (1)

[pj ] 6= [pj′ ] when j 6= j′, and (2) ai = uip
ki,1
1 · · · pki,nn for each i and r = vpl11 · · · plnn

and s = wpm1
1 · · · pmnn . If ai = 0, we may take ui = 0 and ki,j = 0 for each j. Note

that, for each j, either lj = 0 or mj = 0 or both. We have

c =
r

s
= vw−1pl1−m1

1 · · · pln−mnn

and, for each i

cai =
r

s
ai = vw−1uip

ki,1+l1−m1

1 · · · pki,n+ln−mn
n
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The proof will be complete once we show lj > mj for each j. Our assumption
cai ∈ R implies ki,j + lj −mj > 0 for each i, j by part (b); that is lj > mj − ki,j .
The assumption gcd(a0, a1, . . . , ad) = [1] implies that, for each j there is an i such
that ki,j = 0. This choice of i yields lj > mj − 0 = mj . �

Exercise 2.5.21. Let R be a UFD. If a, b, c ∈ R and a
∣∣bc and gcd(a, b) = [1], then

a
∣∣c.

Definition 2.5.22. Let R be an integral domain. If every ideal of R is principal,
then R is a principal ideal domain or PID for short.

Example 2.5.23. Z is a PID. A field k is a PID. We will see below that every PID
is a UFD, but not every UFD is a PID.

The next lemma says that every PID is noetherian. More on this later.

Lemma 2.5.24. Let R be a PID. Given a chain of ideals I1 ⊆ I2 ⊆ · · · ⊆ R, there
exists an integer N > 1 such that, for every n > N we have In = IN .

Proof. Each ideal Ij is principal, say Ij = (aj)R. As in the proof of Proposi-
tion 2.3.13, since the ideals Ij form a chain, the union I = ∪j>1Ij is an ideal of R.
Hence I = (a)R for some a ∈ I = ∪j>1Ij , say a ∈ IN . For each n > N , we have

IN ⊆ In ⊆ I = (a)R ⊆ IN
and so In = IN . �

We will see below that the converse to the next result fails: If k is a field, then
the polynomial ring k[x, y] is a UFD and not a PID.

Theorem 2.5.25. Every PID is a UFD.

Proof. Let R be a PID.
Step 1. Every irreducible element x ∈ R is prime; moreover, the ideal (x)

is maximal. Let I be an ideal such that (x)R ⊆ I ⊆ R. There is an element
a ∈ I such that I = (a)R, and so (x)R ⊆ (a)R. By an exercise, this means a

∣∣x,
say x = ab. Since x is irreducible, either a or b is a unit. If a is a unit, then
I = (a)R = R. If b is a unit, then I = (a)R = (ab)R = (x)R. Thus, (x)R is
maximal. Proposition 2.3.14(b) implies that (x)R is prime, hence x is prime.

Step 2. Every non-zero nonunit y ∈ R has an irreducible factor. If y is irre-
ducible, then y is an irreducible factor of y and we are done. So, assume y is not
irreducible. Then y = y1z1 where y1, z1 are non-zero nonunits. If y1 is irreducible,
then it is an irreducible factor of y and we are done. So, assume y1 is not irre-
ducible. Then y1 = y2z2 where y2, z2 are non-zero nonunits. Continue this process,
writing yn = yn+1zn+1. Eventually, yn will be irreducible, as follows.

Suppose yn = yn+1zn+1 for n = 1, 2, . . . where yi, zi are non-zero nonunits for
each i. Then yn+1

∣∣yn for each n, and so we have

(y1)R ⊆ (y2)R ⊆ (y3)R ⊆ · · · .
By Lemma 2.5.24, we have (yN ) = (yN+1) for some N > 1. Since yN = yN+1zN+1,
this implies zN+1 is a unit, a contradiction.

Step 3. Every non-zero nonunit z ∈ R can be written as a finite product of
irreducible elements. By Step 2, we know that z has an irreducible factor z1, say
z = z1w1. If w1 is a unit, then z is irreducible and we are done. So, assume that w1

is a nonunit, necessarily non-zero because z 6= 0. Then w1 has an irreducible factor
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z2, say w1 = z2w2. Continuing this process, we see that the argument of Step 2
implies that the process terminates in finitely many steps, yielding a factorization
z = z1 · · · zN with each zi irreducible.

Now apply Proposition 2.5.13 to conclude that R is a UFD. �

Definition 2.5.26. An integral domain R is a Euclidean domain or ED for short
if there exists a function ϕ : R− {0} → N satisfying the following property: for all
a, b ∈ R, if b 6= 0, then there exist q, r ∈ R such that a = bq+ r and either r = 0 or
ϕ(r) < ϕ(b).

Example 2.5.27. In Z let ϕ(n) = |n|. This is the division algorithm.

Theorem 2.5.28. Every ED is a PID.

Proof. Let R be an ED and fix an ideal 0 6= I ⊆ R. We need to find an
element b ∈ I such that I = (b)R. The set

{ϕ(a) | 0 6= a ∈ I}
is a non-empty subset of N and hence has a minimal element. That is, there is an
element 0 6= b ∈ I such that ϕ(b) 6 ϕ(c) for all c ∈ I.

Claim: I = (b)R. Since b ∈ I, we know I ⊇ (b)R. For the containment I ⊆
(b)R, fix an element a ∈ I. By assumption, there exist q, r ∈ R such that a = bq+r
and either r = 0 or ϕ(r) < ϕ(b). Notice that a, bq ∈ I and so r = a − bq ∈ I. If
r 6= 0, then ϕ(r) < ϕ(b); however, the minimality of ϕ(b) implies ϕ(r) > ϕ(b), a
contradiction. Hence r = 0 and so a = bq ∈ (b)R. �

Remark 2.5.29. In summary, we have the following: ED
(2.5.28)
=⇒ PID

(2.5.25)
=⇒ UFD and

ED
Z[
√
−19/2]

6⇐= PID
k[x,y]

6⇐= UFD. We will see below that, if R is a UFD, then the poly-
nomial ring R[x1, . . . , xn] is a UFD. In particular, if k is a field, then k[x1, . . . , xn]
is a UFD. However, if n > 1, then R[x1, . . . , xn] is a PID if and only if R is a field
and n = 1 if and only if R[x1, . . . , xn] is an ED.

2.6. Polynomial rings

Definition 2.6.1. Let R be a ring. We define the polynomial ring in one indeter-
minate over R as follows: Let R[x] denote the additive abelian group

R(N) = {(r0, r1, r2, . . .) | rj ∈ R for all j > 0 and rj = 0 for j � 0}.
Hence, addition and subtraction are defined coordinatewise

(r0, r1, r2, . . .) + (s0, s1, s2, . . .) = (r0 + s0, r1 + s1, r2 + s2, . . .)

(r0, r1, r2, . . .)− (s0, s1, s2, . . .) = (r0 − s0, r1 − s1, r2 − s2, . . .)

0R[x] = (0R, 0R, 0R, . . .).

Define multiplication via the formula

(r0, r1, r2, . . .)(s0, s1, s2, . . .) = (c0, c1, c2, . . .)

where
cj =

∑j
i=0 risj−i =

∑
m+n=j rmsn.

Computations:

(0, . . . , 0, ri, ri+1, ri+2, . . . , rd, 0, . . .)(0, . . . , 0, sj , sj+1, sj+2, . . . , se, 0, . . .)

= (0, . . . , 0, risj , risj+1 + ri+1sj , risj+2 + ri+1sj+1 + ri+2sj , . . . , rdse, 0, . . .).
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and

(r0, r1, r2, . . .)(s, 0, 0, . . .) = (r0s, r1s, r2s, . . .).

The degree of (r0, r1, r2, . . .) is deg((r0, r1, r2, . . .)) = sup{i > 0 | ri 6= 0}.

Proposition 2.6.2. Let R be a commutative ring with identity and let 0 6= f, g ∈
R[x].

(a) If fg 6= 0, then deg(fg) 6 deg(f) + deg(g).
(b) If the leading coefficient of f is not a zero-divisor (e.g., if the leading co-

efficient of f is a unit or if R is an integral domain), then deg(fg) =
deg(f) + deg(g).

(c) If f + g 6= 0, then deg(f + g) 6 max{deg(f),deg(g)}.
(d) If deg(f) 6= deg(g), then f + g 6= 0 and deg(f + g) = max{deg(f),deg(g)}.

Proof. (a) and (b). Let d = deg(f) and e = deg(g). The computation of
Definition 2.6.1 shows that deg(fg) 6 d + e = deg(f) + deg(g). Furthermore, the
coefficient of xd+e in fg is the product of the leading coefficients of f and g. So,
equality holds if the product of the leading coefficients of f and g is non-zero.

(c) and (d) follow from similar computations. �

Theorem 2.6.3. Let R be a ring.

(a) With the above operations, R[x] is a ring.
(b) The function f : R → R[x] given by f(r) = (r, 0, 0, . . .) is a monomorphism

of rings.
(c) R is commutative if and only if R[x] is commutative.
(d) R has identity if and only if R[x] has identity.
(e) R is an integral domain if and only if R[x] is an integral domain.
(f) R[X] is never a field.

Proof. (a) We already know that R[x] is an additive abelian group, so it re-
mains to show that multiplication is well-defined, associative, and distributive. For
well-definedness, we only need to check closure. Fix (r0, r1, r2, . . .), (s0, s1, s2, . . .) ∈
R[x]. The element cj =

∑j
i=0 risj−i is a finite sum of products of elements of R

and, hence, is in R. And the above computation shows that cj = 0 for j � 0. The
proofs of associativity and distributivity are exercises.

(b) By definition, we have

f(r + s) = (r + s, 0, 0, . . .) = (r, 0, 0, . . .) + (s, 0, 0, . . .) = f(r) + f(s)

f(rs) = (rs, 0, 0, . . .) = (r, 0, 0, . . .)(s, 0, 0, . . .) = f(r)f(s).

To see that f is a monomorphism: f(r) = 0 if and only if (r, 0, 0, . . .) = (0, 0, 0, . . .)
if and only if r = 0.

(c) ( =⇒ ) Assume that R is commutative. Then∑
m+n=j

rmsn =
∑

m+n=j

smrn.

The left-hand side is the jth entry of the product (r0, r1, r2, . . .)(s0, s1, s2, . . .), and
the right-hand side is the jth entry of the product (s0, s1, s2, . . .)(r0, r1, r2, . . .).

( ⇐= ) Assume that R[x] is commutative. For r, s ∈ R, we have f(rs) =
f(r)f(s) = f(s)f(r) = f(sr). Since f is 1-1, this implies rs = sr.
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(d) ( =⇒ ) Assume that R has identity 1. Then (1, 0, 0, . . .) is a multiplicative
identity for R[x]:

(1, 0, 0, . . .)(r0, r1, r2, . . .) = (1r0, 1r1, 1r2, . . .) = (r0, r1, r2, . . .)

and similarly for (r0, r1, r2, . . .)(1, 0, 0, . . .).
( ⇐= ) Assume that R[x] has identity (e0, e1, e2, . . .). It follows that, for all

r ∈ R, we have

(r, 0, 0, . . .) = (r, 0, 0, . . .)(e0, e1, e2, . . .) = (re0, re1, re2, . . .)

and so re0 = r. Similarly, we have e0r = r and so e0 is a multiplicative identity for
R.

(e) ( =⇒ ) Assume that R is an integral domain. Then R is a non-zero
commutative ring with identity, and so the same is true of R[x]. Fix elements
0 6= (r0, r1, r2, . . .), (s0, s1, s2, . . .) ∈ R. Then there exist i, j > 0 such that ri 6= 0
and rm = 0 for all m < i and sj 6= 0 and sn = 0 for all n < j. Then, we have
risj 6= 0 and so

(r0, r1, r2, . . .)(s0, s1, s2, . . .)

= (0, . . . , 0, ri, ri+1, ri+2, . . .)(0, . . . , 0, sj , sj+1, sj+2, . . .)

= (0, . . . , 0, risj , risj+1 + ri+1sj , risj+2 + ri+1sj+1 + ri+2sj , . . . , rdse, 0, . . .)

6= 0

( ⇐= ) Assume that R[x] is an integral domain. Then R[x] is a non-zero
commutative ring with identity, and so the same is true of R. Suppose 0 6= r, s ∈ R.
Then f(r), f(s) 6= 0 and so

f(rs) = f(r)f(s) 6= 0

and so rs 6= 0.
(f) Suppose that R[X] is a field. Part (e) implies that R is an integral do-

main. Proposition 2.6.2(b) implies that no polynomial of positive degree has a
multiplicative inverse in R[X], contradiction. �

Remark 2.6.4. We frequently identify R with its image in R[x]. This yields
formulas like:

r(r0, r1, r2, . . .) = (rr0, rr1, rr2, . . .).

Here is a more familiar presentation:

Proposition 2.6.5. Let R be a ring with identity and set x = (0, 1, 0, 0, . . .) in
R[x].

(a) For each n > 1, we have xn = (0, 0, . . . , 0︸ ︷︷ ︸
n

, 1, 0, 0, . . .).

(b) For each r ∈ R and each n > 1, we have

rxn = (0, 0, . . . , 0︸ ︷︷ ︸
n

, r, 0, 0, . . .) = xnr.

(c) For each f ∈ R[x] there is an integer d > 0 and elements r0, r1, . . . , rd ∈ R
such that

f =
∑d
i=0 rix

i = r0 + r1x+ r2x
2 + · · ·+ rdx

d.
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Proof. (a) Exercise. By induction on n.
(b) From part (a).
(c) We have

f = (r0, r1, r2, . . . , rd, 0, 0, . . .)

= r0(1, 0, 0, . . .) + r1(0, 1, 0, . . .) + · · ·+ rd(0, 0, . . . , 0, 1, 0, . . .)

= r0 + r1x+ r2x
2 + · · ·+ rdx

d.

�

Remark 2.6.6. Proposition 2.6.5(c) says that the monomials 1, x, x2, . . . span R[x]
over R. The uniqueness of representation of polynomials (f = 0 if and only if all
the coefficients of f are 0) says that these monomials are linear independent over
R, so they form a basis of R[x] over R.

Definition 2.6.7. Let R be a ring. The polynomial ring in two indeterminates
over R is the ring

R[x, y] = R[x][y] or R[x1, x2] = R[x1][x2].

Inductively, the polynomial ring in n indeterminates over R is the ring

R[x1, . . . , xn] = R[x1, . . . , xn−1][xn].

The next result follows from the previous ones using induction on n. See also
Hungerford pp. 151-152.

Proposition 2.6.8. Let R be a ring and n > 1.

(a) R[x1, . . . , xn] is a ring.
(b) Assume that R has identity. Let f ∈ R[x1, . . . , xn]. For each element a =

(a1, . . . , an) ∈ Nn there is an element ra ∈ R such that ra = 0 for all but
finitely many a ∈ Nn and

f =
∑

a∈Nn rax
a1
1 · · ·xann .

(c) Assume that R has identity. The function f : R → R[x1, . . . , xn] given by
f(r) = rx0

1 · · ·x0
n is a monomorphism of rings.

(d) R is commutative if and only if R[x1, . . . , xn] is commutative.
(e) R has identity if and only if R[x1, . . . , xn] has identity.
(f) R is an integral domain if and only if R[x1, . . . , xn] is an integral domain.
(g) For each k such that 1 < k < n, there is an isomorphism R[x1, . . . , xn] ∼=

R[x1, . . . , xk][xk+1, . . . , xn].
(h) For each σ ∈ Sn there is an isomorphism R[x1, . . . , xn] ∼= R[xσ(1), . . . , xσ(n)].
(i) Assume that R has identity. For all r, s ∈ R and all a1, . . . , an, b1, . . . , bn ∈ N,

we have

(rxa11 · · ·xann )(sxb11 · · ·xbnn ) = rsxa1+b1
1 · · ·xan+bn

n .

�

Definition 2.6.9. If S is a ring, then the center of S is

Z(S) = {s ∈ S | ss′ = s′s for all s′ ∈ S}.

Using the subring test, we see that the center Z(S) is a subring of S.
Let R be a commutative ring with identity. For each r ∈ R, set r0 = 1.
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An R-algebra is a ring S with identity equipped with a homomorphism of rings
with identity f : R→ S such that Im(f) ⊆ Z(S).

Let S and T be R-algebras via the maps f : R → S and g : R → T . A homo-
morphism of R-algebras from S to T is a ring homomorphism h : S → T making
the following diagram commute.

R
f //

g
��

S

∃!h
��
T

Note that, because f(1) = 1 and g(1) = 1, we have h(1) = 1.

Example 2.6.10. Let R be a commutative ring with identity.
R is an R-algebra via the identity map R→ R.
The polynomial ring R[x1, . . . , xn] is an R-algebra via the natural map R →

R[x1, . . . , xn].
The ring Mn(R) of n× n matrices with entries from R is an R-algebra via the

map R→Mn(R) given by

r 7→ rIn =

( r 0 ··· 0
0 r ··· 0
...

...
. . .

...
0 0 ··· r

)
.

Here is the universal property for polynomial rings. It includes the prototype
for R-algebra homomorphisms. The maps h are often called evaluation homomor-
phisms: they are given by P (x1, . . . , xn) 7→ P (s1, . . . , sn).

Proposition 2.6.11. Let R be a commutative ring with identity, and let f : R →
R[x1, . . . , xn] be the natural map. Let S be an R-algebra via the homomorphism
g : R→ S. For each list s1, . . . , sn ∈ Z(S) there exists a unique homomorphism of
R-algebras h : R[x1, . . . , xn]→ S such that h(xi) = si for each i. In particular, the
following diagrams commute

R
f //

g

%%

R[x1, . . . , xn]

∃!h
��

{x1, . . . , xn} //

((

R[x1, . . . , xn]

��
S S

and S is an R[x1, . . . , xn]-algebra.

Proof. Define h by the following formula:

h(
∑

a∈Nn rax
a1
1 · · ·xann ) =

∑
a∈Nn g(ra)sa11 · · · sann

where a = (a1, . . . , an). The uniqueness of representation of polynomials shows
that this is well-defined. It is routine to check that h is a ring homomorphism with
the desired properties. For instance, the first diagram commutes because

h(f(r)) = h(rx0
1 · · ·x0

n) = g(r)s0
1 · · · s0

n = g(r)1s = g(r).

For the uniqueness of h, suppose that H : R[x1, . . . , xn] → S is another homomor-
phism of R-algebras such that H(xi) = si for each i. For each a ∈ Nn and each
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ra ∈ R, we then have

H(rax
a1
1 · · ·xann ) = H(f(ra))H(x1)a1 · · ·H(xn)an

= g(ra)sa11 · · · sann
= h(rax

a1
1 · · ·xann ).

Since H preserves finite sums, it follows that

h(
∑

a∈Nn rax
a1
1 · · ·xann ) =

∑
a∈Nn g(ra)sa11 · · · sann = H(

∑
a∈Nn rax

a1
1 · · ·xann )

and so H = h. �

Corollary 2.6.12. Let R be a commutative ring with identity, and let f : R →
R[x1, . . . , xn] be the natural map. For each list r1, . . . , rn ∈ R there exists a unique
homomorphism of R-algebras h : R[x1, . . . , xn]→ r such that h(xi) = ri for each i.
In particular, the following diagrams commute:

R
f //

id
%%

R[x1, . . . , xn]

∃!h
��

{x1, . . . , xn} //

((

R[x1, . . . , xn]

��
R R.

Given a polynomial P = P (x1, . . . , xn) we write h(P ) = P (r1, . . . , rn). �

Here is the division algorithm for polynomial rings. As with the division algo-
rithm in Z, this is the key to all the factorization properties in R[x].

Theorem 2.6.13. Let R be a commutative ring with identity, and fix a polynomial
f = a0 + a1x+ · · ·+ anx

n ∈ R[x] such that an is a unit in R. For each polynomial
g ∈ R[x] there exist unique q, r ∈ R[x] such that g = qf + r and either r = 0 or
deg(r) < deg(f).

Proof. First, we deal with existence.
Because an is a unit in R, we may assume without loss of generality that an = 1.

We may also assume without loss of generality that f is not a constant polynomial.
In particular, we have deg(f) > 1.

If g = 0 or deg(g) < deg(f), then the polynomials q = 0 and r = g satisfy the
desired conclusions.

We assume that g 6= 0 and proceed by induction on d = deg(g). The base case
d = 0 follows from the previous paragraph, as do the cases d < deg(f). Therefore,
assume that d > deg(f) and that the result holds for all polynomials h ∈ R[x]
such that deg(h) < d. Let bd be the leading coefficient of g. Then the polynomial
h = g − bdxd−nf is either 0 or has deg(h) < d. Hence, the induction hypothesis
provides polynomials q1, r ∈ R[x] such that

q1f + r = h = g − bdxd−nf

and either r = 0 or deg(r) < deg(f). It follows that

g = [q1 + bdx
d−n]f + r

so the polynomials q = q1 + bdx
d−n and r satisfy the desired properties.

Now for uniqueness. Assume qf + r = g = q2f + r2 where (1) either r = 0 or
deg(r) < deg(f), and (2) either r2 = 0 or deg(r2) < deg(f). Then r−r2 = (q2−q)f .
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The leading coefficient of f is a unit. If q 6= q2, then r − r2 = (q2 − q)f 6= 0. In
particular, either r 6= 0 or r2 6= 0. If r, r2 6= 0, then Proposition 2.6.2 implies

deg(f) 6 deg(f) + deg(q2 − q) = deg((q2 − q)f)

= deg(r − r2) 6 max{deg(r),deg(r2)} < deg(f)

a contradiction. The cases where r = 0 or r2 = 0 similarly yield contradictions.
Thus, we have q = q2 and r − r2 = (q2 − q)f = 0 and so r = r2. �

Corollary 2.6.14 (Remainder Theorem). Let R be a commutative ring with iden-
tity, and fix s ∈ R. For each polynomial g ∈ R[x] there exist unique q ∈ R[x] such
that g = q · (x− s) + g(s).

Proof. Apply the division algorithm. It suffices to show that r = g(s). Be-
cause either r = 0 or deg(r) < deg(x − s) = 1, we know that r is constant. The
evaluation homomorphism yields

g(s) = q(s)(s− s) + r(s) = 0 + r = r

as desired. �

Definition 2.6.15. Let R be a commutative ring with identity and P ∈ R[x]. An
element r ∈ R is a root of P if P (r) = 0.

Proposition 2.6.16. Let S be an integral domain and R ⊆ S a non-zero subring
such that R has identity.

(a) Then R is an integral domain and 1S = 1R.
(b) If 0 6= f ∈ R[x] and deg(f) = n, then f has at most n roots in S; in

particular, f has at most n roots in R.

The conclusions in this result fail if S is not an integral domain.

Proof. (a) It is straightforward to show that R is an integral domain. To see
that 1R = 1S , note that 1S1R = 1R = 1R1R, so that cancellation implies 1S = 1R.

(b) Proceed by induction on n = deg(f). If n = 0, then f is a non-zero constant
and therefore has no roots.

Inductively, assume that the result holds for polynomials of degree < n. If f
has no roots in S, then we are done. So assume that s ∈ S is a root of f . The
Remainder Theorem implies that there is a unique q ∈ S[x] such that f = (x− s)q.
By Proposition 2.6.2(b) we have deg(q) = deg(f) − 1 = n − 1 < n, and so the
induction hypothesis implies that q has at most n− 1 roots in S.

Let t ∈ S be a root of f . Since the map S[x] → S given by P 7→ P (t) is a
ring homomorphism, it implies that 0 = f(t) = (t − s)q(t). Since S is an integral
domain, either t− s = 0 or q(t) = 0. That is, either t = s or t is a root of q. Since
q has at most n− 1 roots, this implies that f has at most n roots. �

Example 2.6.17. Let R = R[x]/(x2) and set x = x + (x2) ∈ R. Then the
polynomial y2 ∈ R[y] has infinitely many roots, namely, every element of the form
λx for some λ ∈ R.

Remark 2.6.18. Here is a word of warning. Let P ∈ R[x]. From calculus/college
algebra we know that P = 0 if and only if P (r) = 0 for all r ∈ R. This can fail if
R is replaced with an arbitrary ring R, even when R is a field.

For example, let p be a positive prime integer and set R = Z/pZ. It is a fact
that, for each n ∈ R, we have np = n. (This is called Fermat’s Little Theorem.) In
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particular, every element of R is a root of the polynomial xp − x, even though this
polynomial is non-zero. This shows the importance of distinguishing between the
polynomial P and the function R→ R given by evaluating the polynomial P .

Note, however, that this is only a problem with finite fields as the following can
by shown relatively easily using Proposition 2.6.16(b): If k is an infinite field and
P ∈ k[x] has infinitely many roots in k, then P = 0.

2.7. Factorization in Polynomial Rings

Definition 2.7.1. Let R be a UFD and 0 6= f = a0 + a1x+ · · ·+ adx
d ∈ R[x]. A

content of f is a greatest common divisor of {a0, a1, . . . , ad} in R. The polynomial
f is primitive if 1 is a content for f , that is, if the coefficients of f are relatively
prime.

Remark 2.7.2. Let R be a UFD and 0 6= f = a0 + a1x+ · · ·+ adx
d ∈ R[x].

Recall that greatest common divisors are not uniquely defined. Specifically,
if r and s are greatest common divisors of {a0, a1, . . . , ad} in R, then there is a
unit u ∈ R such that s = ur. Conversely, if r is a greatest common divisor of
{a0, a1, . . . , ad} in R and u ∈ R is a unit, then ur is a greatest common divisor of
{a0, a1, . . . , ad} in R.

We say that r, s ∈ R are associates if there is a unit u ∈ R such that s = ur.
Write r ≈ s when r and s are associates in R. The relation ≈ is an equivalence
relation, and the equivalence class of r under this relation is denoted [r]. By defi-
nition, [r] is the set of all unit multiples of r in R. Note that [r] = [1] if and only
if r is a unit in R.

If r, s are contents of f , then the above discussion implies [r] = [s], and we write
C(f) = [r]. (This notation is not standard. However, most books write C(f) = r
or C(f) ≈ r, which is not well defined.) Conversely, if r is a content for f and
[r] = [s], then s is a content for f . Also, if f is constant f = a0, then C(f) = [a0].

If r ≈ r1 and s ≈ s1, then rs ≈ r1s1. Hence, the assignment [r][s] = [rs] is
well-defined.

Exercise 2.7.3. Let R be a UFD and 0 6= f = a0 + a1x+ · · ·+ adx
d ∈ R[x].

(a) Show that C(tf) = [t]C(f) for each t ∈ R.
(b) Show that, if C(f) = [r], then there is a primitive polynomial g such that

f = rg.

The following few results are due to Gauss.

Lemma 2.7.4. Let R be a UFD and let 0 6= f, g ∈ R[x].

(a) If f and g are primitive, then so is fg.
(b) C(fg) = C(f)C(g).

Proof. (a) Assume that f and g are primitive and let C(fg) = [r]. We want
[r] = [1], that is, we want to show that r is a unit. Note that r 6= 0: since R is an
integral domain, so is R[x] and so fg 6= 0.

Suppose that r is not a unit. Since R is a UFD, this implies that r has a
prime factor p. The function τ : R[x] → (R/(p))[x] given by τ(

∑
i aix

i) =
∑
i aix

i

is a well-defined epimorphism of rings with identity. Check this using the universal
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property for polynomial rings with the following diagram as your guide:

R //

��

R[x]

τ

��
R/(p) // (R/(p))[x].

Since p
∣∣r and C(fg) = [r], we see that p divides each coefficient of fg and so

τ(fg) = 0. On the other hand, since f is primitive, we know that p does not divide
at least one coefficient of f , and so τ(f) 6= 0. Similarly, we have τ(g) 6= 0. Since p
is prime, the ring R/(p) is an integral domain, and hence so is (R/(p))[x]. It follows
that 0 6= τ(f)τ(g) = τ(fg), a contradiction.

(b) Write C(f) = [r] and C(g) = [s]. Use Exercise 2.7.3(b) to find primitive
polynomials f1, g1 ∈ R[x] such that f = rf1 and g = sg1. Note that part (a) implies
C(f1g1) = [1]. This explains the third equality in the next sequence:

C(fg) = C((rs)(f1g1)) = [rs]C(f1g1) = [rs] = [r][s] = C(f)C(g).

The first equality is by our choice of f1 and g1; the second equality is by Exer-
cise 2.7.3(a); the remaining equalities are by definition. �

Lemma 2.7.5. Let R be a UFD and let 0 6= f, g ∈ R[x] and 0 6= r ∈ R.

(a) fg is primitive if and only if f and g are primitive.
(b) rf is primitive if and only if f is primitive and r is a unit.
(c) If f is irreducible in R[x], then f is either constant or primitive.

Proof. (a) (⇐= ) Lemma 2.7.4(a).
( =⇒ ) Assume that fg is primitive. With C(f) = [r] and C(g) = [s], we have

[1] = C(fg) = C(f)C(g) = [r][s] = [rs].

It follows that rs is a unit in R, and so r and s are units in R. Hence f and g are
primitive.

(b) This is the special case of part (a) where g = r.
(c) Assume that f is irreducible and not constant. Suppose C(f) = [r] where r

is not a unit in R. Then there exists a nonconstant primitive polynomial f1 ∈ R[x]
such that f = rf1. This gives a factorization of f as a product of two nonunits,
contradicting the assumption that f is irreducible. �

Lemma 2.7.6. Let R be a UFD and set K = Q(R). Let 0 6= f ∈ K[x].

(a) There exists an element 0 6= b ∈ Q(R) such that bf ∈ R[x] and C(bf) = [1].
(b) If c ∈ K and 0 6= F ∈ R[x] is primitive such that cF ∈ R[x], then c ∈ R.
(c) If h ∈ R[x] is primitive and fh ∈ R[x], then f ∈ R[x].

Proof. (a) Write f = a0
b0

+ a1
b1
x+ · · ·+ ad

bd
xd with each ai, bi ∈ R and bi 6= 0.

Lemma 2.5.20(c) shows that there exists an element b ∈ K such that baibi ∈ R

for each i and gcd(ba0b0 , b
a1
b1
, . . . , badbd ) = [1]. In particular, we have bf ∈ R[x] and

C(bf) = [1].
(b) Write F = a0 +a1x+ · · ·+adx

d. Since gcd(a0, a1, . . . , ad) = [1] and cai ∈ R
for each i, Lemma 2.5.20(d) implies that c ∈ R.

(c) Write g = fh ∈ R[x] and set [r] = C(g). Let g1 ∈ R[x] be primitive such
that g = rg1. Use part (a) to find an element 0 6= c ∈ Q(R) such that cf ∈ R[x]
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and C(cf) = [1]. Then (cr)g1 = cg = (cf)h ∈ R[x] and the fact that g1 is primitive
implies cr ∈ R. Hence

[cr] = [cr]C(g1) = C(crg1) = C((cf)h) = C(cf)C(h) = [1][1] = [1]

and it follows that cr is a unit in R. Write cr = u. In K, it follows that c−1 =
ru−1 ∈ R and so

f = c−1︸︷︷︸
∈R

(cf)︸︷︷︸
∈R[x]

∈ R[x]

as desired. �

Theorem 2.7.7. Let R be a UFD with quotient field K = Q(R). Let f ∈ R[x] be
primitive. Then f is irreducible in R[x] if and only if it is irreducible in K[x].

Proof. (⇐= ) Assume that f is irreducible in K[x], and suppose that f = gh
with g, h ∈ R[x] ⊆ K[x]. Since f is irreducible in K[x], either g or h is a unit in
K[x]. Using a degree argument, we conclude that either g or h is a constant. By
symmetry, assume that g is constant, say g = r ∈ R. By Lemma 2.7.5(b), since
rh = f which is primitive, we know that r is a unit in R, and so g is a unit in R[x].

( =⇒ ) Assume that f is not irreducible in K[x]. We will show that f is not
irreducible in R[x].

If f is a unit in K[x], then it is constant say f = r. Since f is primitive in
R[x], we have [1] = C(f) = [r]. Hence r is a unit in R and so f = r is a unit in
R[x]. Thus, in this case, f is not irreducible in R[x].

Assume that f is not a unit in K[x]. Since f is non-zero and is not irreducible,
there exist nonconstant polynomials g, h ∈ K[x] such that f = gh.

Lemma 2.7.6(a) implies that there is an element 0 6= b ∈ K such that bh ∈ R[x]
and C(bh) = [1], that is, h1 = bh is primitive. Write g1 = 1

b g ∈ K[x] so that we

have f = gh = ( 1
b g)(bh) = g1h1. Lemma 2.7.6(c) implies g1 ∈ R[x]. That is, we

have written f = g1h1 where g1, h1 are nonconstant polynomials in R[x]. Hence f
is not irreducible in R[x]. �

Theorem 2.7.8. If R is a UFD, then R[x] is a UFD.

Proof. Set K = Q(R).
We first show that every non-zero nonunit f ∈ R[x] can be written as a product

of irreducible polynomials in R[x]. Since f is a non-zero nonunit, set C(f) = [c]
and find a primitive polynomial f1 ∈ R[x] such that f = cf1.

Since K[x] is a UFD, we can write f1 = p1 · · · pm where each pi ∈ K[x] is
irreducible. Arguing as in Lemma 2.7.6(c), we can use Lemma 2.7.6(a) find elements
0 6= b1, . . . , bm ∈ K such that each qi = bipi is a primitive polynomial in R[x] and
f1 = q1 · · · qm. Notice that bi is a unit in K[x], so each qi is irreducible in K[x].
Hence, Theorem 2.7.7 implies that each qi is irreducible in R[x].

Since R is a UFD, either c is a unit or a product of irreducible elements of R. If
c is a unit, then f = cf1 = (cq1)q2 · · · qm is a factorization of f in R[x] into a product
of irreducibles. If c is not a unit, then there are irreducible elements r1, . . . , rk ∈ R
such that c = r1 · · · rk. It is straightforward to show that each ri is irreducible in
R[x]: the only way factor a constant polynomial over an integral domain is with
constant factors. Hence f = cf1 = r1 · · · rkq1 · · · qm is a factorization of f in R[x]
into a product of irreducibles.
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Next we show that an irreducible element f ∈ R[x] is prime. Lemma 2.7.5(c),
implies that f is either primitive or constant. If f is constant, then the fact that
it is irreducible in R[x] implies that it is irreducible in R. Since R is a UFD, f is
then prime in R. It is straightforward to show that this implies that f is prime in
R[x]: since f is prime in R, the ring R/fR is an integral domain, and hence so is
(R/fR)[x] ∼= R[x]/(fR[x]).

Assume that f is primitive. Note that f is irreducible in K[x] by Theorem 2.7.7.
Hence, the fact that K[x] is a UFD implies that f is prime in K[x]. Let g, h ∈ R[x]
such that f

∣∣gh in R[x]. It follows that f
∣∣gh in K[x], and so either f

∣∣g or f
∣∣h in

K[x] because f is prime in K[x]. Assume that f
∣∣g in K[x] and write g = fg1 for

some g1 ∈ K[x]. Arguing as in Theorem 2.7.7, we see that g1 is in R[x], and so f
∣∣g

in R[x], as desired. �

Corollary 2.7.9. If R is a UFD, then R[x1, . . . , xn] is a UFD.

Proof. Induction on n. �





CHAPTER 3

Module Theory

3.1. Modules

Definition 3.1.1. Let R be a ring. A (left) R-module is an additive abelian
group M equipped with a map R ×M → M (denoted (r,m) 7→ rm) such that
(r+ s)m = rm+ sm, r(m+ n) = rm+ rn, and (rs)m = r(sm) for all r, s ∈ R and
all m,n ∈M .

If R has identity, then a left R-module M is unital if 1m = m for all m ∈M .
If k is a field, then a k-vector space is a unital left k-module.

Example 3.1.2. An abelian group is the same as a unital Z-module.

Example 3.1.3. Let R be a ring. The additive abelian group Rn, consisting of all
column vectors of size n with entries in R, is an R-module via the following action

r

s1

...
sn

 =

rs1

...
rsn


The set of m × n matrices with entries in R is denoted Mm,n(R). It is also an
R-module, with similar coordinate-wise action.

Assume that R has identity. For j = 1, . . . , n let ej ∈ Rn be the vector with
ith entry δi,j . (We call ej the jth standard basis vector of Rn.) In this case the
R-modules Rn and Mm,n(R) are unital.

Example 3.1.4. Let R be a ring, and let I ⊆ R be an ideal. Then I is an R-module
via the multiplication from R. In particular, R is an R-module. Also, the quotient
R/I is an R-module via the action rs := rs. (Check that this is well-defined. The
other properties are straightforward.) If R has identity, then I and R/I are unital
R-modules. Note that I does not need to be a two-sided ideal here.

Remark 3.1.5. The previous examples motivate module theory, in that it gives a
unification of the theory of abelian groups, the theory of vector spaces, the theory
of ideals and the theory of quotients by ideals.

Example 3.1.6. Let R be a ring, and let {Mλ}λ∈Λ be a set of R-modules. Then
the abelian groups

∏
λMλ and ⊕λMλ are R-modules via the coordinate-wise action

r(mλ) = (rmλ). (See Remark 3.1.8 to see why ⊕λMλ is closed under this action.)
In particular, R(Λ) and RΛ are R-modules.

Assume that R has identity and each Mλ is unital. Then
∏
λMλ and ⊕λMλ

are unital. In particular, R(Λ) and RΛ are unital. In this case, for each µ ∈ Λ, let
eµ ∈ R(Λ) be defined as eµ = (eµ,λ) where

eµ,λ =

{
1R if λ = µ

0R if λ 6= µ.

35
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Example 3.1.7. Let ϕ : R→ S be a ring homomorphism. Then S is an R-module
via the following action: rs := ϕ(r)s. If ϕ is a homomorphism of rings with identity,
then this action makes S into a unital R-module. (Note that this subsumes part of
Example 3.1.4.)

More generally, if M is an S-module, then M has a well-defined R-module
structure defined by rm := ϕ(r)m. If ϕ is a homomorphism of rings with identity
and M is a unital S-module, then this action makes M into a unital R-module.

In particular, if I ⊂ R is a two-sided ideal and M is an R/I-module, then M
is an R-module via the action rm := rm. In particular (R/I)n is an R-module; it
is unital when R has identity.

Other examples include:
(R[x1, . . . , xm])n is an R-module. It is unital when R has identity.
If R is an integral domain with quotient field K = Q(R), then Kn is a unital

R-module.

Remark 3.1.8. Let R be a ring and M an R-module. The following properties
are straightforward to show:

r0M = 0M for all r ∈ R;
0Rm = 0M for all m ∈M ;
(−r)m = −(rm) = r(−m) for all r ∈ R and all m ∈M ;
n(rm) = (nr)m = r(nm) for all n ∈ Z, all r ∈ R and all m ∈M .

3.2. Module Homomorphisms

Definition 3.2.1. Let R be a ring and let M and N be R-modules. An additive
group homomorphism f : M → N is an R-module homomorphism if f(rm) = rf(m)
for all r ∈ R and all m ∈ M . (We also say that the function f is “R-linear”.) An
R-module homomorphism is a monomorphism if it is 1-1; it is an epimorphism if
it is onto; and it is an isomorphism if it is 1-1 and onto.

The set of all R-module homomorphisms M → N is denoted HomR(M,N).
If R is a field and M and N are R-vector spaces, then f : M → N is a linear

transformation if it is an R-module homomorphism.

Example 3.2.2. Let G and H be abelian groups with the natural Z-module struc-
ture. A function f : G → H is a Z-module homomorphism if and only if it is a
group homomorphism.

Example 3.2.3. Let R be a ring, and let M and N be R-modules. The zero
map M → N given by m 7→ 0 is an R-module homomorphism. The identity
map idM : M → M given by m 7→ m is an R-module homomorphism. When R
is commutative, for each r ∈ R, the multiplication map µr : M → M given by
m 7→ rm is an R-module homomorphism. The map µr is called a homothety.

Example 3.2.4. Let R be a commutative ring with identity. Let Rn and Rm

have the natural R-module structure. There is a bijection Φ: HomR(Rn, Rm) →
Mm,n(R). Given an R-module homomorphism f : Rn → Rm, the associated matrix
Φ(f) is the matrix whose jth column is f(ej). To see that this is a bijection, we
define an inverse Ψ: Mm,n(R)→ HomR(Rn, Rm). Given anm×nmatrix (ai,j) with
entries in R, the corresponding R-module homomorphism Ψ(ai,j) is the function
f : Rn → Rm given by matrix multiplication f(v) = (ai,j)v.
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In particular, the set HomR(R,R) is in bijection with R. That is, the R-
module homomorphisms f : R → R are exactly the homotheties µr : R → R given
by s 7→ rs.

Example 3.2.5. Let R be a ring and I ⊂ R a two-sided ideal. Let M and N
be R/I-modules, and consider them as R-modules via ϕ. Then HomR(M,N) =
HomR/I(M,N). In other words f : M → N is an R-module homomorphism if and
only if it is an R/I-module homomorphism.

Assume that R/I is commutative with identity. Then there is an equality
HomR(R/I,R/I) = HomR/I(R/I,R/I) which is naturally identified with R/I.
That is, the R-module homomorphisms f : R/I → R/I are exactly the homoth-
eties µr : R/I → R/I given by s 7→ rs = rs.

Example 3.2.6. Let ϕ : R → S be a ring homomorphism. If we give S the R-
module structure induced by ϕ, then this makes ϕ into an R-module homomor-
phism.

Let M and N be S-modules and consider them as R-modules via ϕ. Then
HomS(M,N) ⊆ HomR(M,N), but we may not have equality; that is, every S-
module homomorphism M → N is also an R-module homomorphism, but not
necessarily vice versa.

For instance, let S = R[x] and let ϕ : R → R[x] be the natural inclusion. The
function f : R[x] → R[x] given by

∑
i aix

i 7→ a0 is an R-module homomorphism
but is not an R[x]-module homomorphism.

Proposition 3.2.7. Let R be a ring, M an R-module and Λ a set. Given a subset
{mλ}λ∈Λ, the map f : R(Λ) → M given by (rλ) 7→

∑
λ rλmλ is a well-defined R-

module homomorphism.

Proof. It is straightforward to show that f is a well-defined additive group
homomorphism. It is an R-module homomorphism because

f(r(rλ)) = f((rrλ)) =
∑
λ(rrλ)mλ =

∑
λ r(rλmλ) = r(

∑
λ rλmλ) = rf(rλ)

�

3.3. Submodules

Definition 3.3.1. Let R be a ring and let M be an R-module. A R-submodule
of M is an additive subgroup N ⊆ M such that, for all r ∈ R and all n ∈ N , we
have rn ∈ N . If k is a field and M is a k-vector space, then a k-submodule of M
is called a k-subspace.

Example 3.3.2. Let G be an abelian group considered as a unital Z-module. A
subset H ⊆ G is a Z-submodule of G if and only if it is a subgroup.

Example 3.3.3. Let R be a ring and let M and N be R-modules. The subsets
{0} ⊆ M and M ⊆ M are R-submodules. If f ∈ HomR(M,N), then Ker(f) ⊆ M
and Im(f) ⊆ N are R-submodules. If N ′ ⊆ N is an R-submodule, then f−1(N ′) ⊆
M is an R-submodule. If M ′ ⊆ M is an R-submodule, then f(M ′) ⊆ N is an
R-submodule.

Assume that R is commutative. If r ∈ R, then (0 :M r) = {m ∈ M | rm =
0} ⊆ M is an R-submodule, and rM = {rm | m ∈ M} ⊆ M is an R-submodule.
This follows from the previous paragraph because the homothety µr : M → M is
an R-module homomorphism.
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Example 3.3.4. Let R be a ring considered as an R-module via its internal mul-
tiplication. A subset I ⊆ R is an R-submodule if and only if it is a left ideal.

Example 3.3.5. Let R be a ring, and let {Mλ}λ∈Λ be a set of R-modules. Then
⊕λMλ ⊆

∏
λMλ is an R-submodule.

Example 3.3.6. Let R be a ring and I ⊂ R a two-sided ideal. Let M be an
R/I-module, and consider M as an R-module via the natural surjection R→ R/I.
Then the R/I-submodules of M are exactly the R-submodules of M . In particular,
the R-submodules of R/I are exactly the left ideals of R/I, that is, the set of all
quotients J/I where J is a left ideal of R such that I ⊆ J .

Example 3.3.7. Let ϕ : R → S be a ring homomorphism, and let M be an S-
module. Consider M as an R-module via ϕ. Then every S-submodule of M is an
R-submodule, but not vice versa.

For instance, let S = R[x] and let ϕ : R→ R[x] be the natural inclusion. Then
R ∼= Im(ϕ) ⊂ R[x] is an R-submodule but is not an R[x]-submodule.

Remark 3.3.8. Let R be a ring and M an R-module. If R has identity and M is
unital, then every submodule of M is unital.

Example 3.3.9. Let R be a ring and M an R-module. If {Mλ}λ∈Λ is a set of R-
submodules of M , then ∩λMλ is an R-submodule of M ; it is also an R-submodule
of Mµ for each µ ∈ Λ.

Proposition 3.3.10. Let R be a ring, M an R-module and N ⊆M a submodule.
The quotient group M/N has a well-defined R-module structure via the action

r(m+N) := (rm) +N.

If M is unital, then M/N is unital. The natural surjection π : M → M/N is an
R-module homomorphism with Ker(π) = N .

Proof. First, show that the action is well-defined: Let r ∈ R and m,m′ ∈M
such that m+N = m′ +N . Then m−m′ ∈ N and so rm− rm′ = r(m−m′) ∈ N
which implies rm+N = rm′ +N .

The R-module axioms for M/N now follow from the R-module axioms for M .
For instance, associativity:

r(s(m+N)) = r(sm+N) = r(sm) +N = (rs)m+N = (rs)(m+N).

The distributive laws are verified similarly. When R has identity and M is unital,
it follows similarly that M/N is unital.

The fact that π is an R-module homomorphism is proved next:

π(rm) = (rm) +N = r(m+N) = rπ(n).

The equality Ker(π) = N was shown in Chapter 1. �

Here is the Universal mapping property for quotients.

Proposition 3.3.11. Let R be a ring, f : M → N an R-module homomorphism,
and M ′ ⊆ Ker(f) an R-submodule.



3.3. SUBMODULES 39

(a) There is a unique R-module homomorphism f : M/M ′ → N making the fol-
lowing diagram commute

M
π //

f
##

M/M ′

∃!f
��
N

that is, such that f(m+M ′) = f(m).
(b) We have Im(f) = Im(f) and Ker(f) = Ker(f)/M ′.
(c) f is onto if and only if f is onto.
(d) f is 1-1 if and only if M ′ = Ker(f).
(e) f is an isomorphism if and only if f is onto and M ′ = Ker(f). In particular,

Im(f) ∼= M/Ker(f).

Proof. (a) If g = g′, then g − g′ ∈ K ⊆ Ker(f) and so

0H = f(g − g′) = f(g)− f(g′)

which implies f(g) = f(g′).
It is straightforward to show that f is a group homomorphism. For the unique-

ness, suppose that f ′ : G/K → H is a homomorphism of additive abelian group
making the following diagram commute

G
π //

f !!

G/K

f ′

��
H.

Then we have f ′(g) = f ′(π(g)) = f(g) = f(g) for all g ∈ G/K, so f ′ = f . We need
only show that f is an R-module homomorphism:

f(r(m+M ′)) = f(rm+M ′) = f(rm) = rf(m) = rf(m+M ′).

(b)–(e) These follow from Chapter 1 because they do not depend on the R-
module structure. �

The next proposition follows from Chapter 1 material like Proposition 3.3.11.

Proposition 3.3.12. Let R be a ring, M an R-module and M ′,M ′′ ⊆M submod-
ules.

(a) There is an R-module isomorphism M ′/(M ′ ∩M ′′) ∼= (M ′ +M ′′)/M ′′.
(b) If M ′′ ⊆ M ′, then M ′/M ′′ ⊆ M/M ′′ is a submodule, and there is an R-

module isomorphism (M/M ′′)/(M ′/M ′′) ∼= M/M ′.
(c) Let π : M → M/M ′′ be the R-module epimorphism π(m) = m+M ′′. There

is a 1-1 correspondence

{submodules N ⊆M |M ′′ ⊆ N} ←→ {N ′ ⊆M/M ′′}

given by

N 7−→ N/M ′′

π−1(N ′)←− [ N ′.

(d) If M = M ′ +M ′′ and M ′ ∩M ′′ = 0, then M ∼= M ′ ⊕M ′′. �
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3.4. Generators

Definition 3.4.1. Let R be a ring, M an R-module and X ⊆ M a subset. The
submodule of M generated by X or spanned by X, denoted (X)R, is the intersection
of all submodules of M containing X. If X = {x1, . . . , xn}, then we write (X)R =
(x1, . . . , xn)R. If (X)R = M , then we say that X generates or spans M as an
R-module.

If M has a finite generating set, then it is finitely generated. If M can be
generated by a single element, then it is cyclic.

If {Mλ}λ∈Λ is a set of submodules of M , then (∪λMλ)R is denoted
∑
λMλ.

Remark 3.4.2. Let R be a ring, M an R-module, and X ⊆ M a subset. Then
(X)R is the smallest submodule of M containing X. The R-module M has a
generating set, namely M itself.

Example 3.4.3. Let G be an abelian group with the natural unital Z-module
structure. The Z-submodule of G generated by a subset X is equal to the subgroup
generated by X. In particular G is generated by X as an Z-module if and only if
it is generated by X as an abelian group.

Example 3.4.4. If R is a ring and M is an R-module, then (∅)R = {0}.

Example 3.4.5. If R is a ring with identity, then Rn = (e1, . . . , en)R and R(Λ) =
({eµ | µ ∈ Λ})R.

Example 3.4.6. Let R be a ring and I ⊂ R a two-sided ideal. Let M be an R/I-
module with the R-module structure coming from the natural surjection R→ R/I.
For each subset X ⊆ M , the R-submodule of M generated by X equals the R/I-
submodule ofM generated byX. In particularM is generated byX as anR-module
if and only if it is generated by X as an R/I-module.

Proposition 3.4.7. Let R be a ring with identity and M a unital R-module.

(a) Let X ⊆M . There is an equality

(X)R = {
∑finite
x∈X rxx | rx ∈ R, x ∈ X}.

(b) The function f : R(X) →M given by (rx) 7→
∑finite
x rxx is a well-defined R-

module homomorphism such that Im(f) = (X)R. Moreover, f is the unique
R-module homomorphism R(X) →M such that ex 7→ mx for each x ∈ X.

(c) The function f : R(X) → (X)R given by (rx) 7→
∑finite
x rxx is a well-defined

R-module epimorphism.
(d) For each m1, . . . ,mn ∈M , we have

(m1, . . . ,mn)R = {
∑n
i=1 rimi | r1, . . . , rn ∈ R}

and the function f : Rn → (m1, . . . ,mn)R given by

(
r1
...
rn

)
7→
∑n
i=1 rimi is a

well-defined R-module epimorphism.
(e) Given a set {Mλ}λ∈Λ of submodules of M , there is an equality∑

λMλ = {
∑finite
λ mλ | mλ ∈Mλ}

and the function f : ⊕λ Mλ →
∑
λMλ given by (mλ) 7→

∑
λmλ is a well-

defined R-module epimorphism.
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Proof. (a) Set N = {
∑finite
x rxx | rx ∈ R, x ∈ X}. It is straightforward to

show that N is an R-submodule of M containing X, and so (X)R ⊆ N . For the
reverse containment, we have x ∈ X ⊆ (X)R for each i; since (X)R is an R-module,

we have rxx ∈ (X)R for each rx ∈ R and furthermore
∑finite
x rxx ∈ (X)R. This

shows (X)R ⊇ N and so (X)R = N .
(b) The function f is a well-defined R-module homomorphism by Proposi-

tion 3.2.7. The image of f is (X)R by part (a). And

f(ex) = 1Rmx +
∑
y 6=x

0Rmy = mx.

For the uniqueness of f , let g : R(X) → M be an R-module homomorphism such
that ex 7→ mx for each x ∈ X. Let (rx) ∈ R(X) and write (rx) =

∑
x∈X rxex. Then

g((rx)) = g(
∑
x∈X rxex) =

∑
x∈X rxg(ex) =

∑
x∈X rxmx = f((rx)).

It follows that g = f , as desired.
Part (c) follows from part (b). Part (d) is a special case of part (c) using

X = {m1, . . . ,mn}. Part (e) is proved like (b). �

Example 3.4.8. Let R be a ring with identity and let f : M → N be a homomor-
phism of unital R-modules. If M = (X)R, then f(M) = (f(X))R. More generally,
for each subset X ⊆M , we have f((X)R) = (f(X))R.

Example 3.4.9. Let ϕ : R→ S be a ring homomorphism. Let M be an S-module
with the R-module structure coming from ϕ. For each subset X ⊆ M , the R-
submodule of M generated by X is contained in the S-submodule of M generated
by X, however they may not be equal.

For instance, let R be a commutative ring with identity. The R-submodule of
R[x] generated by 1 is R, and the R[x]-submodule of R[x] generated by 1 is R[x].

Proposition 3.3.10 gives one of the best ways to construct R-modules.

Example 3.4.10. Let R be a commutative ring with identity, and let (ai,j) ∈
Mm,n(R). The matrix (ai,j) determines an R-module homomorphism f : Rn → Rm.
It follows that Im(f) ⊆ Rm is an R-submodule, namely the submodule generated
by the columns of (ai,j), and so Rm/ Im(f) is an R-module. Proposition 3.4.11
shows that, in a sense, this is the only way to construct R-modules.

Proposition 3.4.11. Let R be a ring with identity and M a unital R-module.

(a) There is a set Λ and an R-module epimorphism π : R(Λ) → M . If M is
finitely generated, then Λ can be chosen to be finite.

(b) There are sets Λ and Γ and an R-module homomorphism f : R(Γ) → R(Λ)

such that M ∼= R(Λ)/ Im(f). If M is finitely generated, then Λ can be chosen
to be finite.

Proof. (a) Let Λ be a generating set for R, which exists by Remark 3.4.2.
Note that, if M is finitely generated, then Λ can be chosen to be finite. Proposi-
tion 3.4.7 (c) provides an R-module epimorphism π : R(Λ) → (Λ)R = M .

(b) Let Λ and π be as in part (a). Then Ker(π) is an R-module, so part (a)
implies that there is a set Γ and an R-module epimorphism τ : R(Γ) → Ker(π). Let
ι : Ker(π)→ R(Λ) be the natural inclusion. Then ι is an R-module homomorphism
because Ker(π) ⊆ R(Λ) is an R-submodule. It follows that the composition f =
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ιτ : R(Γ) → R(Λ) is an R-module homomorphism and Im(f) = Ker(π). This gives
the equality in the next sequence

M ∼= R(Λ)/Ker(π) = R(Λ)/ Im(f)

while the isomorphism is from Proposition 3.3.11(e). �

3.5. Bases, Free Modules, and Vector Spaces

Definition 3.5.1. Let R be a ring and M an R-module. A subset X ⊆ M is
linear independent over R if, for every n ∈ N and every list of distinct elements
x1, . . . , xn ∈ X, given r1, . . . , rn ∈ R such that

∑
i rixi = 0, we have ri = 0 for

i = 1, . . . , n.
Assume that R has identity. A subset of X ⊆M is an R-basis for M if it spans

M as an R-module and is linearly independent over R. If M has a basis, then it is
free.

Example 3.5.2. Let G be an abelian group with the natural unital Z-module
structure. A subset X ⊆ G is a Z-basis for G if and only if it is a basis for G as an
abelian group. In particular G is free as a Z-module if and only if it is free as an
abelian group.

Example 3.5.3. If R is a ring with identity and M is a unital R-module, then ∅
is an R-basis for {0}.

Example 3.5.4. If R is a ring with identity, then {e1, . . . , en} ⊆ Rn is an R-basis.
Hence Rn is a free R-module. More generally, if Λ is a set, then {eλ}λ∈Λ ⊆ R(Λ)

is an R-basis. Hence R(Λ) is a free R-module. We shall see below that, up to
isomorphism, these are the only free R-modules.

Most R-modules are not free:

Example 3.5.5. The unital Z-module Z/2Z is not free. Indeed, a generating set
X ⊆ Z/2Z must be non-empty because Z/2Z 6= 0. However, for each x ∈ X, we
have 2x = 0 in Z/2Z even though 2 6= 0 in Z; hence X is not linearly independent
over Z.

More generally, if R is a ring with identity and 0 6= I ( R is an ideal, then R/I
is not a free R-module. In particular, this shows that quotients of free R-modules
need not be free.

Submodules of free R-modules need not be free.

Example 3.5.6. Every subgroup of Zn is free as an abelian group; see Proposi-
tion 3.9.1. In other words, every Z-submodule of Zn is free as a Z-module.

Over different rings, though, the analogous result need not be true. Indeed, the
Z/6Z-module M = Z/6Z is free as a Z/6Z-module. However, the Z/6Z-submodule
3Z/6Z ⊆ Z/6Z is not free as a Z/6Z-module. (Argue as in Example 3.5.5.)

For another example, let k be a field and consider the polynomial ring R =
k[x, y]. Then R is a free R-module, and the ideal (x, y)R ⊂ R is a submodule. The
submodule (x, y)R is generated by the set {x, y} but this set is not a basis over R
because yx− xy = 0 and y 6= 0. (We will see below that this shows that (x, y)R is
not free as an R-module.)
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Example 3.5.7. Let R be a ring with identity. The polynomial ring R[x], consid-
ered as an R-module via the natural inclusion R → R[x] is a free R-module with
basis {1, x, x2, . . .}.

Here is the Universal Mapping Property for free modules. Compare it to Propo-
sition 3.4.7(b).

Proposition 3.5.8. Let R be a ring with identity and M a unital R-module. Let
F be a free R-module with basis E, and let X = {me ∈ M | e ∈ E} be a subset of
M . The function f : F → M given by

∑
e∈E ree 7→

∑
e∈E reme is a well-defined

R-module homomorphism such that Im(f) = (X)R. Moreover, f is the unique
R-module homomorphism F →M such that e 7→ me for each e ∈ E.

Proof. The function f is a well-defined, as follows. Each element of F has
a unique expression of the form

∑
e∈E ree since E is a basis for F . This sum is

finite, so the sum
∑
e∈E reme is finite and describes an element of M ; thus, the

output of f is in M . The uniqueness of representation of
∑
e∈E ree shows that this

is independent of representative of the input.
Now that f is well-defined, it is straightforward to show that it is an R-module

homomorphism. by Proposition 3.2.7. For each e ∈ E we have

f(e) = 1Rme +
∑
e′ 6=e

0Rme′ = me.

The image of f is (X)R by Proposition 3.4.7(a). For the uniqueness of f , argue as
in the proof of Proposition 3.4.7(b). �

Proposition 3.5.9. Let R be a ring with identity and M a unital R-module. Then
M is free if and only if there is a set Λ and an isomorphism M ∼= R(Λ). When M
is free with basis X, then one has M ∼= R(X).

Proof. If M ∼= R(Λ), then Example 3.5.4 shows that M is free. Thus, it
remains to assume that M is free with basis X and prove that M ∼= R(X). Proposi-
tion 3.4.7(b) implies that there is a unique R-module homomorphism f : R(X) →M
such that f(ex) = x for all x ∈ X. Proposition 3.5.8 implies that there is a unique
R-module homomorphism g : M → R(X) such that f(x) = ex for all x ∈ X.

The composition g ◦ f : R(X) → R(X) is an R-module homomorphism R(X) →
R(X) such that ex 7→ ex for all x ∈ X. The identity map idR(X) : R(X) → R(X) is
another R-module homomorphism R(X) → R(X) such that ex 7→ ex for all x ∈ X.
Hence, the uniqueness statement in Proposition 3.4.7(b) implies that g◦f = idR(X) .
Similarly, the uniqueness statement in Proposition 3.5.8 implies that f ◦ g = idM .
Thus, f and g are inverse isomorphisms, implying that M ∼= R(X), as desired. �

Lemma 3.5.10. Let k be a field and V a k-vector space.

(a) Let X ⊆ V , and let Y ⊆ X be a linearly independent subset that is maximal
among all linearly independent subsets of V contained in X, with respect to
inclusion. Then Y is a basis for (X)R.

(b) Let Y ⊆ V be a linearly independent subset that is maximal among all linearly
independent subsets of V , with respect to inclusion. Then Y spans V and so
Y is a basis for V .

Proof. (a) The condition Y ⊆ X implies (Y )R ⊆ (X)R. The desired con-
clusion will follow once we show (Y )R = (X)R, because then Y will be a linearly
independent spanning set for (X)R. So, suppose (Y )R ⊂ (X)R.
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Claim: X 6⊆ (Y )R. If not, then X ⊆ (Y )R and so (X)R ⊆ (Y )R ⊆ (X)R
which implies (X)R = (Y )R, a contradiction.

Fix an element v ∈ X r (Y )R, and set Y ′ = Y ∪ {v}. We will show that
Y ′ is linearly independent, and this will contradict the maximality of X. Let
r, r1, . . . , rn ∈ k and y1, . . . , yn ∈ Y such that rv +

∑
i riyi = 0. If r 6= 0, then

v =
∑
i(−r−1ri)yi ∈ (Y )R ⊆ (X)R, a contradiction. It follows that r = 0 and

so
∑
i riyi = 0. Since Y is linearly independent, it follows that ri = 0 for each i.

Hence Y ′ is linearly independent.
(b) This is the special case X = V of part (a). �

Theorem 3.5.11. Let k be a field and V a k-vector space. Every linearly indepen-
dent subset of V is contained in a basis for V . In particular V has a basis and is
therefore free.

Proof. The second statement is the special case X = ∅ of the first statement,
so we prove the first statement.

Let X ⊆ V be a linearly independent subset. Set

Σ = {linearly independent Z ⊆ V | X ⊆ Z}

and partially order Σ by inclusion. Since X ∈ Σ, we have Σ 6= ∅. We will apply
Zorn’s Lemma to show that Σ contains a maximal element Y . This will be a linearly
independent subset of V that is maximal among all linearly independent subsets of
V , with respect to inclusion, that contains X. Then Lemma 3.5.10(b) will imply
that Y is a basis for V containing X.

Let C be a chain in Σ. That is C ⊆ Σ such that, for all Z,Z ′ ∈ C, either
Z ⊆ Z ′ or Z ′ ⊆ Z. It is straightforward to show that the set ∪Z∈CZ is a linearly
independent subset of V such that X ⊆ ∪Z∈CZ, that is, we have ∪Z∈CZ ∈ Σ. It
follows immediately that ∪Z∈CZ is an upper bound for C in Σ. Thus Σ satisfies the
hypotheses of Zorn’s Lemma. �

Theorem 3.5.12. Let k be a field and V a k-vector space. Every spanning set for
V contains a basis for V .

Proof. Let X ⊆ V be a spanning set for V . Set

Σ = {linearly independent Z ⊆ X}

and partially order Σ by inclusion. Since ∅ ∈ Σ, we have Σ 6= ∅. As in the proof
of Theorem 3.5.11, the set Σ contains a maximal element Y . This is a linearly
independent subset of V that is maximal among all linearly independent subsets of
V contained in X, with respect to inclusion. Lemma 3.5.10(a) implies that Y is a
basis for (X)R = V contained in X. �

Example 3.5.13. Let m,n > 1. It is a fact that, if Zm ∼= Zn, then m = n; see
Theorem 3.5.29. If we replace Z with an arbitrary ring R with identity, though,
the analogous statement can be false. (See Hungerford Exercise IV.2.13.) We will
see, however, that when R is commutative with identity, this is OK.

First we show that free modules with infinite bases are always OK.

Lemma 3.5.14. Let R be a ring with identity and F a free R-module. If X is a
basis for F and X ′ ⊂ X, then X ′ does not span F .
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Proof. Let x ∈ XrX ′. We claim that x 6∈ (X ′)R. (Then x ∈ F r (X ′)R and
so X ′ does not span F .) Suppose x ∈ (X ′)R and write x =

∑m
i=1 rix

′
i with the ri ∈

R and x′i ∈ X. Then the nontrivial linear dependence relation −x+
∑m
i=1 rix

′
i = 0

contradicts the linear independence of X. �

Lemma 3.5.15. Let R be a ring with identity and F a free R-module. If X spans
F and Y is a finite subset of F , then there is a finite subset X ′ ⊆ X such that
(Y )R ⊆ (X ′)R.

Proof. Write Y = {y1, . . . , ym} ⊆ F = (X)R. For each i = 1, . . . ,m there
exists ni ∈ N and xi,1, . . . , xi,ni ∈ X and ri,1, . . . , ri,ni ∈ R such that yi =∑ni
j=1 ri,jxi,j . Consider the finite set X ′ = {xi,j | i = 1, . . . , n; j = 1, . . . , ni} ⊆ X.

It follows that Y ⊆ (X ′)R and so (Y )R ⊆ (X ′)R. �

Lemma 3.5.16. Let R be a ring with identity and F a free R-module. If F has an
infinite basis, then every spanning set (and hence every basis) for F is infinite.

Proof. Let X be an infinite basis for F , and let Y be a spanning set for F .
By way of contradiction, suppose that Y is a finite set. By Lemma 3.5.15 there is
a finite subset X ′ ⊆ X such that F = (Y )R ⊆ (X ′)R ⊆ F . Hence (X ′)R = F and
so X ′ spans F . On the other hand, X is infinite and X ′ is a finite subset. Hence
X ′ ⊂ X, and so Lemma 3.5.14 says that X ′ cannot span F , a contradiction. �

Lemma 3.5.17. Let R be a ring with identity and F an R-module. Let X be a
linearly independent subset of F and let X ′, X ′′ ⊆ X. If (X ′)R ⊆ (X ′′)R, then
X ′ ⊆ X ′′.

Proof. Suppose that x′ ∈ X ′rX ′′. Since x′ ∈ X ′ ⊆ (X ′)R ⊆ (X ′′)R we have
x′ =

∑
i rix

′′
i for some ri ∈ R and distinct x′′i ∈ X ′′. Since x′ is distinct from the

x′′i , this yields a nontrivial linear dependence relation in X, a contradiction. �

Remark 3.5.18. Let R be a ring with identity and F a free R-module. Let Y be a
basis for F , and let K(Y ) denote the set of all finite subsets of Y . Let X ⊆ F , and
define a function f : X → K(Y ) as follows: for each x ∈ X let f(x) = {y1, . . . , yn}
where there exist r1, . . . , rn ∈ R such that each ri 6= 0 and x =

∑n
i=1 riyi. Since Y

is a basis for F , the yi are uniquely determined by x, so this function is well-defined.

Lemma 3.5.19. Let R be a ring with identity and F a free R-module. Assume
that X and Y are infinite bases for F , and let K(Y ) denote the set of all finite
subsets of Y . Let f : X → K(Y ) be the function from Remark 3.5.18.

(a) The set ∪S∈Im(f)S ⊆ Y spans F , and so ∪S∈Im(f)S = Y .
(b) The set Im(f) is infinite.
(c) For each T ∈ K(Y ), the set f−1(T ) is finite.

Proof. (a) For each x ∈ X, we have x ∈ (f(x))R by the definition of f .
Hence X ⊆ (∪S∈Im(f)S)R and so F = (X)R ⊆ (∪S∈Im(f)S)R ⊆ F which implies
(∪S∈Im(f)S) = F . Since Y is a basis for F and ∪S∈Im(f)S is a spanning set for F
contained in Y , Lemma 3.5.14 implies ∪S∈Im(f)S = Y .

(b) Suppose that Im(f) is finite. Since each element of Im(f) is a finite subset
of Y , it follows that Y ′ = ∪S∈Im(f)S is a finite subset of Y . Part (a) says that Y ′

spans F . On the other hand, Y is infinite and Y ′ is a finite subset. Hence Y ′ ⊂ Y ,
and so Lemma 3.5.14 says that Y ′ cannot span F , a contradiction.
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(c) Note that f−1(T ) ⊆ X. If T 6∈ Im(f), then f−1(T ) = ∅ which is a finite
set. Assume that T ∈ Im(f). If x ∈ f−1(T ), then x ∈ (T )R by definition of f . It
follows that f−1(T ) ⊆ (T )R. On the other hand, Lemma 3.5.15 implies that there is
a finite subset X ′ ⊂ X such that (T )R ⊆ (X ′)R and so (f−1(T )) ⊆ (T )R ⊆ (X ′)R.
Since f−1(T ) and X ′ are subsets of X, Lemma 3.5.17 implies f−1(T ) ⊆ X ′. Since
X ′ is finite, the same is true of f−1(T ). �

Here are some highlights of Hungerford section 0.8.

Definition 3.5.20. Let X and Y be sets. If there is a 1-1 function X → Y , then
we write |X| 6 |Y |. If there is a bijection X → Y , then we say that X and Y have
the same cardinality and write |X| = |Y |. A set X is countable if |X| = |N|.

Example 3.5.21. When X and Y are finite sets, they have the same cardinality
if and only if they contain the same number of elements.

Fact 3.5.22. (Schroeder-Bernstein Theorem) Let X and Y be sets. If |X| 6 |Y |
and |Y | 6 |X|, then |X| = |Y |. In other words, if there are 1-1 functions X → Y
and Y → X, then there is a bijection X → Y .

Fact 3.5.23. Let X be an infinite set. Then |X × N| = |X|. If K(X) denotes the
set of all finite subsets of X, then |K(X)| = |X|.

Theorem 3.5.24. Let R be a ring with identity and F a free R-module with an
infinite basis X. Then every basis for F has the same cardinality as X. Specifically,
if Y is another basis for F , then there is a bijection X → Y .

Proof. Let Y be another basis for F . Lemma 3.5.16 implies that Y is infinite.
Let K(Y ) denote the set of all finite subsets of Y . Let f : X → K(Y ) be the function
from Remark 3.5.18. Note that X is the disjoint union X = ∪T∈Im(f)f

−1(T ).

For each T ∈ Im(f) order the elements of f−1(T ), say x1, . . . , xn are the distinct
elements of f−1(T ). Define a function gT : f−1(T )→ N by setting gT (xi) = i.

Define h : X → K(Y ) × N by the assignment h(x) = (f(x), gf(x)(x)). One
checks readily that h is well-defined and 1-1. Using Fact 3.5.23 this implies

|X| 6 |K(Y )× N| = |K(Y )| = |Y |.
By symmetry we have |Y | 6 |X|, so the Schroeder-Bernstein Theorem implies
|X| = |Y |, as desired. �

Lemma 3.5.25. Let k be a field and let F be a k-vector space. Fix elements
x1, . . . , xj , yj , . . . , yn ∈ F where 1 6 j < n, and assume that F is spanned by
{x1, . . . , xj−1, yj , . . . , yn}. If {x1, . . . , xj} is linearly independent, then the yi’s can
be reindexed so that F = (x1, . . . , xj−1, xj , yj+1, . . . , yn)R.

Proof. Case 1: j = 1. Our assumptions translate as: F = (y1, . . . , yn)R and
x1 6= 0. Since x1 ∈ F = (y1, . . . , yn)R we have x1 = r1y1 + · · · rnyn for some ri ∈ R.
Since x1 6= 0, we have rk 6= 0 for some k. Reorder the yi’s to assume that r1 6= 0.
Since k is a field, we have

y1 = r−1
1 x1 +

∑n
i=2(−r−1

1 ri)yi

and so y1 ∈ (x1, y2, . . . , yn)R. Since we also have yi ∈ (x1, y2, . . . , yn)R for each
i = 2, . . . , n, we have

F = (y1, y2, . . . , yn)R ⊆ (x1, y2, . . . , yn)R ⊆ F
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and so F = (x1, y2, . . . , yn)R.
Case 2: j > 2. We have F = (x1, . . . , xj−1, yj , . . . , yn)R, and {x1, . . . , xj} is

linearly independent. Since xj ∈ F = (x1, . . . , xj−1, yj , . . . , yn)R we have xj =∑j−1
i=1 rixi +

∑n
i=j riyi for some ri ∈ R.

Suppose that ri = 0 for i = j, . . . , n, then xj =
∑j−1
i=1 rixi ∈ (x1, . . . , xj−1)R,

which is impossible since {x1, . . . , xj−1, xj} is linearly independent. This implies
that ri 6= 0 for some i = j, . . . , n. Reorder the yi’s to assume that rj 6= 0. Since k
is a field, the argument of Case 1 shows that yj ∈ (x1, . . . , xj−1, xj , yj+1, . . . , yn)R
and further that F = (x1, . . . , xj−1, xj , yj+1, . . . , yn)R as desired. �

Theorem 3.5.26. Let k be a field and let F be a k-vector space. If X and Y are
two bases for F , then |X| = |Y |.

Proof. If either X or Y is infinite, then this follows from Theorem 3.5.24.
Hence we assume that X and Y are both finite. If X is empty, then it is straight-
forward to show that Y is empty, and conversely. so we assume that X,Y 6= ∅. Let
x1, . . . , xm be the distinct elements of X and let y1, . . . , yn be the distinct elements
of Y .

Claim: n > m. (Once this is shown, a symmetric argument will imply m > n
and so m = n and we are done.) Suppose n < m. Lemma 3.5.25 implies
that the yi’s can be reordered so that F = (x1, y2, . . . , yn)R. By induction on
j, Lemma 3.5.25 implies that the remaining yi’s can be reordered so that F =
(x1, . . . , xj , yj+1, . . . , yn)R for each j = 1, . . . , n. The case j = n says that F =
(x1, . . . , xn)R. In particular, we have (x1, . . . , xn, xn+1, . . . , xm)R ⊆ (x1, . . . , xn)R.
Lemma 3.5.25 implies that {x1, . . . , xn, xn+1, . . . , xm} ⊆ {x1, . . . , xn} and so xm ∈
{x1, . . . , xn}. Since m > n and {x1, . . . , xm} is linearly independent, this is impos-
sible. �

Lemma 3.5.27. Let R be a ring with identity and I ⊂ R a two-sided ideal. Let F be
a free R-module with basis X, and let π : F → F/IF be the canonical epimorphism.
Then F/IF is a free R/I-module with basis π(X), and |π(X)| = |X|.

Proof. Step 1: π(X) generates F/IF . This follows from Example 3.4.8 since
π is an R-module epimorphism.

Step 2: Fix distinct elements x1, . . . , xn ∈ X and suppose that r1, . . . , rn ∈ R
such that

∑n
i=1(ri + I)π(xi) = 0. We show that each ri ∈ I. We have

IF =
∑n
i=1(ri + I)(xi + IF ) =

∑n
i=1(rixi + IF ) = (

∑n
i=1 rixi) + IF

and so
∑n
i=1 rixi ∈ IF . Write

∑n
i=1 rixi =

∑
j ajfj for some aj ∈ I and fj ∈ F .

Write each fj =
∑
k rj,kxj,k for some rj,k ∈ R and xj,k ∈ X. Then∑n

i=1 rixi =
∑
j ajfj =

∑
j aj(

∑
k rj,kxj,k) =

∑
j,k(ajrj,k)xj,k.

Thus, we have written the element
∑n
i=1 rixi in the form

∑
l slx

′
l for some sl ∈ I and

x′l ∈ X. Re-index if necessary and add terms of the form 0xi and 0x′l if necessary
to write ∑n

i=1 rixi =
∑n
i=1 sixi

with the si ∈ I. This implies

0 =
∑n
i=1(ri − si)xi

so the fact that X is linearly independent implies ri = si ∈ I for each i.
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Step 3: π(X) is linearly independent over R/I. (This will show that F/IF
is a free R/I-module with basis π(X).) Fix distinct elements x1, . . . , xn ∈ X and
suppose that r1, . . . , rn ∈ R such that

∑n
i=1(ri + I)π(xi) = 0. Step 2 shows that

each ri ∈ I, and so each coefficient ri + I = I = 0R/I .
Step 4: |π(X)| = |X|. The map π : X → π(X) is surjective by design. We need

to show that it is 1-1. Suppose that x, x′ ∈ X such that x 6= x′ and π(x) = π(x′).
Then

(1 + I)π(x) + (−1 + I)π(x′) = 0

and so Step 2 implies that 1,−1 ∈ I. This implies I = R, contradicting our
assumption I ⊂ R. �

Definition 3.5.28. Let R be a ring with identity. R satisfies the invariant basis
property if: for every free R-module F , any two bases of F have the same cardinality.
If R has the invariant basis property and F is a free R-module, the rank of F is

rankR(F ) =

{
n if F has a finite basis with exactly n elements

∞ if F has an infinite basis.

Every field k has the invariant basis property by Theorem 3.5.26. The rank of a
k-vector space V is often called the dimension of V , denoted dimk(V ) = rankk(V ).
Note that this definition differs from Hungerford’s definition.

Theorem 3.5.29. If R is a commutative ring with identity, then R has the invari-
ant basis property.

Proof. Let F be a free R-module with bases X and Y . Let m ⊂ R be a maxi-
mal ideal. Let π : F → F/mF be the canonical epimorphism. Lemma 3.5.27 implies
that F/mF is a vector space over R/m with bases π(X) and π(Y ). Theorem 3.5.26
then provides the second inequality in the following sequence

|X| = |π(X)| = |π(Y )| = |Y |
while the first and third equalities are from Lemma 3.5.27. �

Now we focus on the basic properties of dimension.

Theorem 3.5.30. Let k be a field. Let V be a k-vector space and let W ⊆ V be a
k-subspace.

(a) dimk(W ) 6 dimk(V ).
(b) If dimk(W ) = dimk(V ) and dimk(V ) <∞, then W = V .
(c) dimk(V ) = dimk(W ) + dimk(V/W ).

Proof. Let Y be a k-basis for W . Theorem 3.5.11 provides a basis X for V
such that Y ⊆ X.

(a) If dimk(V ) =∞, then we are done, so assume that dimk(V ) <∞. Then X
is finite, and it follows that Y is finite and

dimk(W ) = |Y | 6 |X| = dimk(V ).

(b) Since dimk(V ) < ∞, we know that X is finite, and so Y is finite. Since
dimk(W ) = dimk(V ), we see that Y is a subset of the finite set X with the same
number of elements of X, and so Y = X. Thus W = (Y )R = (X)R = V .

(c) Claim: The set Z = {x + W ∈ V/W | x ∈ X r Y } is a k-basis for
V/W . To see that Z spans V/W , let v + W ∈ V/W . Since v ∈ V , we write
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v =
∑
i rixi +

∑
j sjyj with ri, sj ∈ R, xi ∈ X rY and yj ∈ Y . Then

∑
j sjyj ∈W

and so

v +W = (
∑
i rixi +

∑
j sjyj)R+W = (

∑
i rixi)R+W ∈ ({xi +W})R ⊆ (Z)R.

This shows that V/W ⊆ (Z)R. Since Z ⊆ V/W , we have (Z)R ⊆ V/W and so
(Z)R = V/W .

Note that, for x, x′ ∈ X r Y we have x = x′ if and only if x + W = x′ + W .
The forward implication is straightforward. For the reverse implication, assume
x+W = x′+W . This implies x−x′ ∈W = (Y )R and so x−x′ =

∑
i riyi for some

ri ∈ k and yi ∈ Y . Since the set X is linearly independent, this linearly dependence
relation implies x = x′.

To see that Z is linearly independent over k, let x1 +W, . . . , xn+W be distinct
elements of V/W and let r1, . . . , rn ∈ k such that

∑
i ri(xi + W ) = 0. Then∑

i rixi ∈W , so there are distinct elements y1, . . . , ym ∈ Y and s1, . . . , sm ∈ k such
that ∑

i rixi =
∑
j sjyj .

The elements x1, . . . , xn, y1, . . . , ym ∈ X are distinct since Y ∩ (X r Y ) = ∅, using
the previous paragraph. Hence, the displayed linearly dependence relation implies
that each ri, sj = 0. This establishes the claim.

If dimk(V ) =∞, then X is infinite, and so either Y or XrY is infinite; in this
case, the formula dimk(V ) = dimk(W ) + dimk(V/W ) is satisfied. If dimk(V ) <∞,
then

dimk(V ) = |X| = |Y |+ |X r Y | = dimk(W ) + dimk(V/W )

as desired. �

Corollary 3.5.31. Let k be a field and let f : V → W be a linear transformation
of k-vector spaces. Then

dimk(V ) = dimk(Im(f)) + dimk(Ker(f)).

Proof. We have an isomorphism Im(f) ∼= V/Ker(f) and so Theorem 3.5.30(c)
yields the desired equality. �

3.6. Hom

Remark 3.6.1. LetR be a ring and letM andN be leftR-modules. Recall that the
set HomR(M,N) of all R-module homomorphisms M → N is an additive abelian
group under pointwise addition (f + g)(m) = f(m) + g(m). If R is commutative,
then HomR(M,N) is a left R-module via the action (rf)(m) = rf(m) = f(rm).

Definition 3.6.2. Let R be a ring and let φ : M → M ′ and ψ : N → N ′ be
homomorphisms of left R-modules. Define the function

HomR(M,ψ) : HomR(M,N)→ HomR(M,N ′) as f 7→ ψ ◦ f.

Define the function

HomR(φ,N) : HomR(M ′, N)→ HomR(M,N) as g 7→ g ◦ φ.

A common notation for HomR(M,ψ) is ψ∗. A common notation for HomR(φ,N)
is φ∗. The module HomR(M,R) is sometimes called the “dual” of M .

Here is the functoriality of Hom.
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Proposition 3.6.3. Let R be a ring and let M be an R-module. Let φ : N → N ′

and φ′ : N ′ → N ′′ be R-module homomorphisms.

(a) The maps HomR(φ,M) and HomR(M,φ) are group homomorphisms.
(b) We have HomR(idN ,M) = idHomR(N,M) and HomR(M, idN ) = idHomR(M,N).
(c) We have equalities HomR(φ′ ◦ φ,M) = HomR(φ,M) ◦ HomR(φ′,M) and

HomR(M,φ′ ◦ φ) = HomR(M,φ′) ◦HomR(M,φ).
(d) Assuming that R is commutative, HomR(φ,M) and HomR(M,φ) are R-

module homomorphisms.

Proof. We verify the properties for HomR(−,M). For HomR(M,−), the
properties are verified similarly.

(a) For HomR(φ,M), we need to show that

HomR(φ,M)(f + g) = HomR(φ,M)(f) + HomR(φ,M)(g)

for each f, g ∈ HomR(N ′,M). In other words, we need to show that

(f + g) ◦ φ = (f ◦ φ) + (g ◦ φ).

These are functions N →M , so we check this on elements n ∈ N :

((f + g) ◦ φ)(n) = (f + g)(φ(n)) = f(φ(n)) + g(φ(n)) = (f ◦ φ+ g ◦ φ)(n)

The verification for HomR(M,φ) is similar.
(b) For each g ∈ HomR(N,M), we have HomR(idN ,M)(g) = g ◦ idN = g.
(c) For each g ∈ HomR(N ′′,M), we have

HomR(φ′ ◦ φ,M)(g) = g ◦ (φ′ ◦ φ) = (g ◦ φ′) ◦ φ = HomR(φ,M)(g ◦ φ′)
= HomR(φ,M)(HomR(φ′,M)(g))

= (HomR(φ,M) ◦HomR(φ′,M))(g).

(d) Assume that R is commutative. We need to show that

HomR(φ,M)(rg) = r(HomR(φ,M)(g))

for each r ∈ R and each g ∈ HomR(N ′,M). In other words, we need

(rg) ◦ φ = r(g ◦ φ).

As in part (a), we check this on elements n ∈ N :

((rg) ◦ φ)(n) = (rg)(φ(n)) = r(g(φ(n))) = (r(g ◦ φ))(n).

�

Remark 3.6.4. It is worth noting that Proposition 3.6.3(c) says that the following
diagrams commute:

HomR(N ′′,M)
HomR(φ′,M) //

HomR(φ′◦φ,M) **

HomR(N ′,M)

HomR(φ,M)

��
HomR(N,M)

HomR(M,N)
HomR(M,φ) //

HomR(M,φ′◦φ) **

HomR(M,N ′)

HomR(M,φ′)

��
HomR(M,N ′′)
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Proposition 3.6.5. Let R be a ring and let φ : M → M ′ be a homomorphism of
left R-modules. Let n ∈ N.

(a) HomR(Rn,M) is a left R-module by the action (rf)(v) = f(vr). If R has
identity, then this action is unital.

(b) The map HomR(Rn, φ) : HomR(Rn,M)→ HomR(Rn,M ′) is a left R-module
homomorphism.

(c) HomR(M,Rn) is a right R-module by the action (ψr)(v) = φ(v)r. If R has
identity, then this action is unital.

(d) The map HomR(φ,Rn) : HomR(M ′, Rn) → HomR(M,Rn) is a right R-
module homomorphism.

Proof. Exercise. �

Proposition 3.6.6. Let R be a ring with identity and let φ : M → N be a homo-
morphism of unitary left R-modules. Let n ∈ N and let e1, . . . , en ∈ Rn be a basis.
Define ΦM : HomR(Rn,M)→Mn by the formula ΦM (f) = (f(e1), . . . , f(en)).

(a) The map ΦM is an isomorphism of left R-modules.
(b) There is a commutative diagram

HomR(Rn,M)
HomR(Rn,φ) //

ΦM ∼=
��

HomR(Rn, N)

ΦN ∼=
��

Mn φn // Nn

where φn(m1, . . . ,mn) = (φ(m1), . . . , φ(mn)).

Proof. (a) It is straightforward to show that ΦM is an R-module homomor-
phism. To see that it is onto, let (m1, . . . ,mn) ∈ Mn. Proposition 3.3.2.7 says
that the map f : Rn → M given by f(r1, . . . , rn) =

∑
i rimi is a well-defined R-

module homomorphism. By definition, we have f(ei) = mi for each i, and so
ΦM (f) = (m1, . . . ,mn).

To see that ΦM is 1-1, assume that ΦM (f) = 0. That is, f(ei) = 0 for each
i. It follows that for each

∑
i riei ∈ Rn, we have f(

∑
i riei) =

∑
i ri0 = 0. Thus

f = 0 and ΦM is bijective.
(b) For f ∈ HomR(Rn,M), we compute:

ΦN (HomR(Rn, φ)(f)) = ΦN (φ ◦ f) = (φ(f(e1)), . . . , φ(f(en)))

φn(ΦM (f)) = φn(f(e1), . . . , f(en)) = (φ(f(e1)), . . . , φ(f(en)))

as desired. �

3.7. Exact Sequences

Definition 3.7.1. Let R be a ring. A sequence of left R-module homomorphisms

M2
f2−→M1

f1−→M0

is exact if Ker(f1) = Im(f2). More generally, a A sequence of left R-module homo-
morphisms

· · · fi+1−−−→Mi
fi−→Mi−1

fi−1−−−→ · · ·
is exact if Ker(fi) = Im(fi+1) for all i. A short exact sequence is an exact sequence
of the form

0→M ′ →M →M ′′ → 0.
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Remark 3.7.2. Given an sequence of left R-module homomorphisms

· · · fi+1−−−→Mi
fi−→Mi−1

fi−1−−−→ · · ·
we have Ker(fi) ⊇ Im(fi+1) if and only if fifi+1 = 0.

Example 3.7.3. Let M ′,M ′′ be left R-modules. Then the sequence

0→M ′
f−→M ′ ⊕M ′′ g−→M ′′ → 0

is exact. Here f(m′) = (m′, 0) and g(m′,m′′) = m′′.

Example 3.7.4. Let R be a ring and let I ⊆ R be an ideal. Then the sequence

0→ I
f−→ R

g−→ R/I → 0

is exact. Here f is the inclusion and g is the natural surjection.
More generally, let M be a left R-module, and let M ′ ⊆ M be submodule.

Then the sequence

0→M ′
f−→M

g−→M/M ′ → 0

is exact. Here f is the inclusion and g is the natural surjection.

Proposition 3.7.5. Let R be a ring.

(a) The sequence 0→M ′
f−→M is exact if and only if f is 1-1.

(b) The sequence M
g−→M ′′ → 0 is exact if and only if g is onto.

Proof. f is 1-1 if and only if Ker(f) = 0 = Im(0→M ′). g is onto if and only
if Im(g) = M ′′ = Ker(M ′′ → 0). �

Definition 3.7.6. Let R be a ring, and consider two exact sequence of left R-
module homomorphisms

M• = · · · fi+1−−−→Mi
fi−→Mi−1

fi−1−−−→ · · ·
and

N• = · · · gi+1−−−→ Ni
gi−→ Ni−1

gi−1−−−→ · · · .
A homomorphism from M• to N• is a sequence of maps h• = {hn : Mn → Nn}n∈Z
such that hn−1fn = gnhn for all n ∈ Z. In other words, the maps hn make the
following “ladder diagram” commute.

M•

h•

��

· · ·
fi+1 // Mi

fi //

hi

��

Mi−1

fi−1 //

hi−1

��

· · ·

N• · · ·
gi+1 // Ni

gi // Ni−1

gi−1 // · · · .

The homomorphism h• is an isomorphism from M• to N• if it has a two-sided
inverse, that is, if there exists a homomorphism k• : N• → M• such that hnkn =
idNn and knhn = idMn

for all n.

Remark 3.7.7. Let R be a ring, and consider two exact sequence of left R-module
homomorphisms

M• = · · · fi+1−−−→Mi
fi−→Mi−1

fi−1−−−→ · · ·
N• = · · · gi+1−−−→ Ni

gi−→ Ni−1
gi−1−−−→ · · · .

Let h• : M• → N• be a homomorphism of exact sequences. Then h• is an isomor-
phism if and only if each hn is an isomorphism.
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Example 3.7.8. Given two integers m and n with n 6= 0, here is a homomorphism
of short exact sequences of abelian groups:

0 // Z n //

n

��

Z //

��

Z/nZ //

��

0

0 // nZ/mnZ // Z/mnZ // Z/nZ // 0.

Here the unlabeled maps are the natural inclusions and surjections. This homo-
morphism is an isomorphism if and only if m = 0.

Proposition 3.7.9 (Short Five Lemma). Let R be a ring, and consider a homo-
morphism of exact sequences

M ′
f //

h

��

M
g //

k

��

M ′′ //

l
��

0

0 // N ′
F // N

G // N ′′.

(a) If h and l are 1-1, then k is 1-1.
(b) If h and l are onto, then k is onto.

Proof. (a) Assume that h and l are 1-1. Let m ∈ Ker(k) ⊆M . Commutativ-
ity of the diagram implies that

l(g(m)) = G(k(m)) = G(0) = 0.

Since l is 1-1, we have g(m) = 0. The exactness of the top row of the diagram
implies that m ∈ Ker(g) = Im(f) and so m = f(m′) for some m′ ∈ M ′. It follows
that

0 = k(m) = k(f(m′)) = F (h(m′)).

Since F and h are 1-1, it follows that m′ = 0 and so m = f(m′) = f(0) = 0.
(b) Assume that h and l are onto. Let n ∈ N . Since l is onto, there exists

m′′ ∈ M ′′ such that l(m′′) = G(n). Since g is onto, there exists m ∈ M such that
g(m) = m′′, and so

G(k(m)) = l(g(m)) = l(m′′) = G(n).

(We would like to conclude that k(m) = n, but this may not be true.) Instead,
the displayed equation implies that G(k(m) − n) = G(k(m)) − G(n) = 0 and so
k(m) − n ∈ Ker(G) = Im(F ). Write k(m) − n = F (n′) for some n′ ∈ N ′. Since h
is onto, there exists m′ ∈M ′ such that h(m′) = n′. It follows that

k(f(m′)) = F (h(m′)) = F (n′) = k(m)− n
and sok(m− f(m′)) = n. Thus, n ∈ Im(k) and so k is onto. �

Definition 3.7.10. Let R be a ring. An exact sequence

0→M ′ →M →M ′′ → 0

is split if it is isomorphic to the sequence

0→M ′
f−→M ′ ⊕M ′′ g−→M ′′ → 0

where f(m′) = (m′, 0) and g(m′,m′′) = m′′. In particular, if the given sequence is
split, then M ∼= M ′ ⊕M ′′.
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Here is a classification of split exact sequences.

Proposition 3.7.11. Let R be a ring, and consider an exact sequence

0→M ′
f−→M

g−→M ′′ → 0.

TFAE.

(i) The exact sequence is split;
(ii) There is an R-module homomorphism f1 : M →M ′ such that f1◦f = idM ′ ;

(iii) There is an R-module homomorphism g1 : M ′′ →M such that g◦g1 = idM ′′ .

Proof. We will prove (i)⇐⇒ (ii). The proof of (i)⇐⇒ (iii) is similar.
(i) =⇒ (ii) Assume that the given sequence is split. Then there is a commuta-

tive diagram

0 // M ′
f //

h ∼=
��

M
g //

k ∼=
��

M ′′ //

l ∼=
��

0

0 // M ′
i // M ′ ⊕M ′′ t // M ′′ // 0

where i(m′) = (m′, 0) and t(m′,m′′) = m′′. Let i1 : M ′ ⊕M ′′ → M ′ be given by
i1(m′,m′′) = m′. We will show that the map f1 = h−1 ◦ i1 ◦ k : M → M ′ satisfies
the desired property.

We first compute:

i ◦h ◦ f1 ◦ f = i ◦h ◦h−1 ◦ i1 ◦ k ◦ f = i ◦ i1 ◦ k ◦ f = i ◦ i1 ◦ i ◦h = i ◦ idM ′ ◦h = i ◦h.
The third equality follows from the commutativity of the diagram. The remaining
equalities are by definition. Thus, we have

(i ◦ h) ◦ (f1 ◦ f) = i ◦ h = (i ◦ h) ◦ idM ′ .

Since i and h are 1-1, it follows that f1 ◦ f = idM ′ as desired.
(i) ⇐= (ii) Assume that there is an R-module homomorphism f1 : M → M ′

such that f1 ◦f = idM ′ . Let F : M →M ′⊕M ′′ be given by F (m) = (f1(m), g(m)).
We will show that the following diagram commutes

0 // M ′
f //

idM′ ∼=
��

M
g //

F ∼=
��

M ′′ //

idM′′ ∼=
��

0

0 // M ′
i // M ′ ⊕M ′′ t // M ′′ // 0

where i(m′) = (m′, 0) and t(m′,m′′) = m′′. The Short Five Lemma will then imply
that F is an isomorphism, so that the displayed diagram is an isomorphism of exact
sequences; by definition, it then follows that the original sequence is split.

We compute: for m′ ∈M ′ and m ∈M we have

F (f(m′)) = (f1(f(m′)), g(f(m′))) = (m′, 0) = i(m′).

t(F (m)) = t(f1(m), g(m)) = g(m).

�

Corollary 3.7.12. Let R be a ring with identity, and consider an exact sequence

0→M ′
f−→M

g−→M ′′ → 0

of unitary R-modules. If M ′′ is free, then this sequence is split.
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Proof. It suffices to find an R-module homomorphism g1 : M ′′ → M such
that gg1 = idM ′′ . Since M ′′ is free, it has a basis B ⊆ M ′′. g is surjective, so for
each b ∈ B, there exists mb ∈M such that g(mb) = b. Define g1 : M ′′ →M by the
formula g1(

∑
b abb) =

∑
b abmb. Proposition 3.3.2.7 says that f1 is a well-defined

R-module homomorphism. We compute:

g(g1(
∑
b abb)) = g(

∑
b abmb) =

∑
b abg(mb) =

∑
b abb

which shows that g ◦ g1 = idM ′′ , as desired. �

Corollary 3.7.13. Let R be a commutative ring with identity, and consider an
exact sequence

0→ Rm
f−→ Rn

g−→ Rp → 0.

Then n = m+ p.

Proof. Corollary 3.7.12 implies that the given sequence splits. In particular,
we have Rn ∼= Rm ⊕ Rp ∼= Rm+p. The invariant basis property implies that
n = m+ p. �

Remark 3.7.14. The invariant basis property actually holds, more generally, for
any ring with identity, whether it is commutative or not. It follows that the con-
clusion of Corollary 3.7.13 also holds when R is any ring with identity.

3.8. Noetherian Rings and Modules

Definition 3.8.1. Let R be a ring. A left R-module M is noetherian if it satisfies
the ascending chain condition (ACC) on submodules: For every ascending chain of
submodules M1 ⊆ M2 ⊆ · · · ⊆ M , we have Mn = Mn+1 = Mn+2 = · · · for some
n > 1.

Slogan: every ascending chain of submodules stabilizes.
The ring R is (left) noetherian if it is noetherian as an R-module, that is, if it

satisfies ACC on left ideals.

Example 3.8.2. Every field k is a noetherian ring because the only ideals are (0)k
and k. More generally, every PID is noetherian by Lemma 2.5.24.

Theorem 3.8.3. Let R be a ring and M an R-module. The following conditions
are equivalent:

(i) M is noetherian as an R-module;
(ii) every submodule of M is finitely generated;

(iii) every non-empty set of submodules of M has a maximal element.

Proof. (i) =⇒ (ii). Assume that M is noetherian and let N ⊆ M be a
left submodule. Suppose that N is not finitely generated. In particular, we have
N 6= 0. Let 0 6= x1 ∈ N . Since N is not finitely generated, we have (x1)R ( N ,
so we have x2 ∈ N − (x1)R. It follows that (x1)R ( (x1, x2)R because x2 ∈
(x1, x2)R− (x1)R. Since N is not finitely generated, we have (x1, x2)R ( N , so we
have x3 ∈ N − (x1, x2)R. It follows that (x1)R ( (x1, x2)R ( (x1, x2, x3)R because
x3 ∈ (x1, x2, x3)R− (x1, x2)R. Continue inductively to find construct an ascending
chain of left submodules

(x1)R ( (x1, x2)R ( · · · ( (x1, x2, . . . , xn)R ( (x1, x2, . . . , xn, xn+1)R ( · · ·
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This chain never stabilizes, contradicting our noetherian assumption. Thus, N is
finitely generated.

(ii) =⇒ (iii). Assume that every left submodule of M is finitely generated, and
let S be a non-empty set of left submodules of M . We need to show that S has a
maximal element N , that is, a submodule N in S with the following property: If
P is a submodule in S such that N ⊆ P , then N = P .

We employ Zorn’s Lemma.1 For this, we need to show that every chain in S
has an upper bound in S. Let C be a chain of submodules in S. As usual the
union N = ∪P∈CP is a left submodule of R. We need to show that N is in S. By
assumption, the submodule N is finitely generated, say N = (a1, . . . , an)R. Since
each ai ∈ N = ∪P∈CP , we have ai ∈ Pi for some Pi ∈ C. Since C is a chain, there
is an index j such that Pi ⊆ Pj for each i. Hence, we have ai ∈ Pj for each i, and
so

N = (a1, . . . , an)R ⊆ Pj ⊆ N.
It follows that N = Pj ∈ S, as desired.

(iii) =⇒ (i). Assume every non-empty set of left submodules of M has a
maximal element, and consider a chain of left submodules M1 ⊆M2 ⊆ · · · ⊆M . We
need to show that the chain stabilizes. By assumption, the set S = {M1,M2, . . .}
has a maximal element, say it is Mn. For each i > 1 we have Mn ⊆ Mn+i, so
the maximality of Mn implies Mn = Mn+i. Thus, the chain stabilizes and M is
noetherian. �

Corollary 3.8.4. Let R be a ring. The following conditions are equivalent:

(i) R is noetherian;
(ii) every left ideal of R is finitely generated;
(iii) every non-empty set of left ideals of R has a maximal element.

Proof. This is the special case M = R of Theorem 3.8.3. �

This characterization shows how to construct a ring that is not noetherian.

Example 3.8.5. Let k be a field and let R = k[x1, x2, . . .] be a polynomial ring in
infinitely many variables. The ideal (x1, x2, . . .)R ⊂ R is not finitely generated and
so R is not noetherian.

Here is the Hilbert Basis Theorem.

Theorem 3.8.6 (Hilbert). Let R be a commutative ring with identity. The poly-
nomial ring R[x] is noetherian.

Proof. Let I ⊆ R[x] be an ideal. We will show that I is finitely generated.
For each r = 0, 1, 2, . . . let

Ir = {a ∈ R | ∃a0 + a1x+ . . .+ ar−1x
r−1 + axr ∈ I}.

Since I is an ideal in R[x], it follows readily that Ir is an ideal in R. Furthermore,
we have I0 ⊆ I1 ⊆ I2 ⊆ · · · ⊆ R: If a ∈ Ir then there exists a polynomial
f = a0 + a1x + . . . + ar−1x

r−1 + axr ∈ I; since I is an ideal the polynomial
xf = a0x+ a1x

2 + . . .+ ar−1x
r + axr+1 ∈ I, and so a ∈ Ir+1.

Since R is noetherian, there exists J > 0 such that, for every j > J we have Ij =
IJ . Furthermore, every Ir is finitely generated, say, Ir = (ar,1, . . . , ar,kr )R. Thus,

1Q. What is yellow and equivalent to the Axiom of Choice?
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there exist fr,1, . . . , fr,kr ∈ I such that fr,i = ar,i,0 + ar,i,1x + . . . + ar,i,r−1x
r−1 +

ar,ix
r.
Claim: I = ({fr,i | r = 0, . . . , J ; i = 1, . . . , kr})R. (Once this is proved, we are

done.) Set I ′ = ({fr,i | r = 0, . . . , J ; i = 1, . . . , kr})R. The containment I ⊇ I ′

holds because each fr,i ∈ I. for the containment I ⊆ I ′, let f ∈ I. Since 0 ∈ I ′, we
assume that f 6= 0 and set s = deg(f). We show that f ∈ I ′ by induction on s.

Base case: s = 0. Here we see that f is constant, and so f = a0 ∈ R. Since
f ∈ I, we conclude that f ∈ I0 = (a0,1, . . . , a0,k0)R = (f0,1, . . . , f0,k0)R ⊆ I ′.

Inductive step: Assume that s > 1 and that, for every polynomial g ∈ I with
deg(g) < s, we have g ∈ I ′. Write f = b0 + · · ·+ bsx

s.

Case 1: s 6 J . Then bs ∈ Is = (as,1, . . . , as,ks)R. Write bs =
∑ks
i=1 cias,i

with each ci ∈ R. The polynomial g = f −
∑ks
i=1 cifs,ix

r−s ∈ I is either 0 or has

deg(g) < s. Furthermore, we have f−g =
∑ks
i=1 cifs,ix

r−s ∈ (fs,1, . . . , fs,ks)R ⊆ I ′,
and so f ∈ I ′ if and only if g ∈ I ′. By our induction hypothesis, we have g ∈ I ′,
and so f ∈ I ′, as desired.

Case 2: s > J . Then bs ∈ Is = IJ = (aJ,1, . . . , aJ,kJ )R. Write bs =
∑kJ
i=1 ciaJ,i

with each ci ∈ R. The polynomial g = f −
∑kJ
i=1 cifJ,ix

r−J ∈ I is either 0 or has

deg(g) < s. Furthermore, we have f − g =
∑kJ
i=1 cifJ,ix

r−J ∈ I ′, and so f ∈ I ′ if
and only if g ∈ I ′. By our induction hypothesis, we have g ∈ I ′, and so f ∈ I ′, as
desired. �

The Hilbert Basis Theorem gives a lot of examples of noetherian rings.

Definition 3.8.7. Let S be a commutative ring with identity, and let R ⊆ S be a
subring such that 1R = 1S . Given a subset T ⊂ S, let R[T ] denote the intersection
of all subrings of S that contain R ∪ T . This is the subring of S generated over R
by T . It is the smallest subring of S containing R and T . In other words, it is the
smallest R-subalgebra of S containing T .

The R-algebra S is said to be a finitely generated R-algebra if there are elements
s1, . . . , sn ∈ S such that S = R[{s1, . . . , sn}] = R[s1, . . . , sn].

Corollary 3.8.8. Let R be a commutative ring with identity. Every finitely gener-
ated R-algebra is noetherian. In particular, each polynomial ring in finitely many
variables R[x1, . . . , xn] is noetherian.

Proof. For polynomial rings, the result follows from the Hilbert Basis The-
orem by induction on the number of variables. In general, each finitely generated
R-algebra is (isomorphic to a ring) of the form R[x1, . . . , xn]/J . Since R is noether-
ian, the same is true of the polynomial ring R[x1, . . . , xn], and an exercise shows
that the same is true for the quotient R[x1, . . . , xn]/J . �

3.9. Modules over Principal Ideal Domains

Proposition 3.9.1. Let R be a PID. Every submodule of Rn is free of rank 6 n.

Proof. By induction on n. If n = 1, then every submodule M ⊆ R is M = rR
for some r ∈ R. Therefore,

M =

{
{0} ∼= R0 if r = 0

rR ∼= R1 if r 6= 0.
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Assume n > 1 and assume that every submodule of Rn−1 is free of rank 6 n−1. Let
K ⊆ Rn be a submodule, and define t : Rn → R by the formula t(a1, . . . , an) = an.
Check that t is a homomorphism with Ker(t) = Rn−1 ⊕ {0} ∼= Rn−1. It follows
that t(K) ⊆ R, so t(K) = rR for some r ∈ R. If r = 0, then K ⊆ Ker(t) = Rn−1,
so our induction hypothesis implies that K is free of rank 6 n− 1. So, we assume
that r 6= 0.

Define g : K → t(K) by the formula g(k) = t(k). Then g is an R-module
epimorphism. It is straightforward to verify that

Ker(g) = Ker(t) ∩K = Rn−1 ∩K ⊆ Rn−1.

By our induction hypothesis, we have Ker(g) ∼= Rm for some m 6 n− 1.
There is an exact sequence

0→ Ker(g)→ K
g−→ t(K)→ 0.

Since t(K) is free, this sequence splits, so we have

K ∼= Ker(g)⊕ t(K) ∼= Rm ⊕R ∼= Rm+1.

Since m+ 1 6 n, this is the desired result. �

Remark 3.9.2. Let R be a commutative ring with identity, and fix integers n, k >
1. Recall that we have HomR(Rk, Rn) ∼= Mn×k(R). Specifically, let h : Rk → Rn

be an R-module homomorphism. Write elements of Rk and Rn as column vectors
with entries in R. Let e1, . . . , ek ∈ Rk be the standard basis. For j = 1, . . . , k write

h(ej) =


a1,j

...
ai,j

...
an,j

 .

Then h is represented by the n× k matrix

[f ] = (ai,j) =


a1,1 ··· a1,j ··· a1,k

...
...

...
ai,1 ··· ai,j ··· ai,k
...

...
...

an,1 ··· an,j ··· an,k


in the following sense: For each vector(

r1
...
rk

)
∈ Rk

we have

h

(
r1
...
rk

)
=

( a1,1 ··· a1,k
...

...
an,1 ··· an,k

)(
r1
...
rk

)
.

We have elementary basis operations on the ej :

(1) Replace ej with uej where u ∈ R is a unit;
(2) Interchange ej and el;
(3) Replace ej with ej + rel for some r ∈ R and l 6= j.
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These correspond to the appropriate elementary column operations on the matrix
(ai,j), in the following sense. Applying one of the elementary basis operations to the
ej yields an isomorphism Φ: Rk → Rk such that the following diagram commutes

Rk
(ai,j) //

Φ ∼=
��

Rn

=

��
Rk

(bi,j) // Rn

where (bi,j) is the matrix obtained by applying the corresponding elementary col-
umn operation to the matrix (ai,j). And, conversely, if (bi,j) is obtained from
(ai,j) by an elementary column operation, then the corresponding elementary basis
operations on the ej yields a commutative diagram as above.

Let f1, . . . , fn ∈ Rn be the standard basis. The elementary basis operations on
the fj correspond similarly to the elementary row operations on the matrix (ai,j).

Furthermore, if we repeatedly apply elementary row and column operations to
the matrix (ai,j) to obtain the matrix (ci,j), then this yields a commutative diagram

Rk
(ai,j) //

Φ ∼=
��

Rn

Ψ ∼=
��

Rk
(ci,j) // Rn.

We say that an n × k matrix (di,j) with entries in R is equivalent to (ai,j) if it
can be obtained from (ai,j) using a (finite) sequence of elementary row and column
operations.

Proposition 3.9.3. Let R be a PID. Fix integers n > k > 1 and let h : Rk → Rn

be an R-module monomorphism. There exists a commutative diagram of group
homomorphisms

Rk
h //

Φ ∼=
��

Rn

Ψ ∼=
��

Rk
h′ // Rn

such that the matrix representing h′ is “diagonal”, that is, [h′] = (di,j) where di,j =
0 when i 6= j.

Proof. Let [h] = (ai,j), and let A denote the set of all s ∈ R such that a finite
number of elementary row and column operations applied to (ai,j) yields a matrix
with s in the upper left corner. The set S = {sR | s ∈ A} is a non-empty set of
ideals of R. Since R is a PID, it is noetherian, and so S has a maximal element.
Apply the necessary row and column operations to yield a new matrix (bi,j) such
that b1,1R is a maximal element of S.

Note that b1,1 6= 0. Indeed, since h is a monomorphism, the matrix (bi,j) is
non-zero. It follows that a finite number of row and column operations will yield
a matrix with a non-zero element s 6= 0 in the upper left corner. If b1,1 = 0, then
b1,1R = (0) ( sR, contradicting the maximality of b1,1 in S.

Claim: b1,1
∣∣b1,2. Suppose not. Then b1,2 6∈ b1,1R. It follows that b1,1R (

(b1,1, b1,2)R. Since R is a PID, there is an element d ∈ R such that (b1,1, b1,2)R =
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dR. Thus, we have
(0) ( b1,1R ( (b1,1, b1,2)R = dR.

In particular, we have d 6= 0. We will derive a contradiction by showing that d ∈ A;
the relation b1,1R ( dR will then contradict the maximality of b1,1R in S.

Since d ∈ dR = (b1,1, b1,2)R, there are elements u, v ∈ R such that d = ub1,1 +
vb1,2. On the other hand, we have b1,1, b1,2 ∈ (b1,1, b1,2)R = dR and so there are
elements x, y ∈ R such that b1,1 = xd and b1,2 = yd. This yields

1d = d = ub1,1 + vb1,2 = uxd+ vyd = (ux+ vy)d

and so ux+ vy = 1 because d 6= 0.
Consider the following matrix multiplication: b1,1 b1,2 ··· b1,k

b2,1 b2,2 ··· b2,k
...

...
...

bn,1 bn,2 ··· bn,k



u −y 0 ··· 0
v x 0 ··· 0
0 1 1 ··· 0
...

...
...

...
0 0 0 ··· 1

 =

 d ∗ ··· ∗
∗ ∗ ··· ∗
...

...
...

∗ ∗ ··· ∗


Because ux + vy = 1, it can be shown that the second matrix corresponds to a
change of basis. It follows that d ∈ A, as desired.

A similar argument shows that b1,1
∣∣b1,i for i = 2, . . . , k and b1,1

∣∣bj,1 for j =
2, . . . , n. Thus, we may use elementary row and column operations to find an
matrix (ci,j) equivalent to (bi,j) and hence equivalent to (ai,j) such that r 6= 1
implies c1,r = 0 and cr,1 = 0: 

c1,1 0 0 ··· 0
0 c2,2 c2,3 ··· c2,k
0 c3,2 c3,3 ··· c3,k
...

...
...

...
0 cn,2 cn,3 ··· cn,k


Repeating this process to appropriate “submatrices” of (ci,j) yields the desired

matrix, and Remark 3.9.2 yields the desired commutative diagram. �

Note that, in the next result, we have Coker(h) = N/ Im(h) and Coker(h′) =
N ′/ Im(h′).

Proposition 3.9.4. Let R be a ring, and consider the following commutative dia-
gram of R-module homomorphisms

K
h //

Φ
��

N

Ψ
��

K ′
h′ // N ′.

(a) There is a unique R-module homomorphism α : N/ Im(h)→ N ′/ Im(h′) mak-
ing the following diagram commute

K
h //

Φ

��

N

Ψ

��

π // N/ Im(h)

∃!α
��

// 0

K ′
h′ // N ′

π′ // N ′/ Im(h′) // 0

where π and π′ are the natural epimorphisms.
(b) If Ψ is surjective, then so is α.
(c) If Φ is surjective and Ψ is injective, then α is injective.
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Proof. Let α : N/ Im(h) → N ′/ Im(h′) be given by α(x) = Ψ(x). It is
straightforward to show that α satisfies the given properties. �

Here is the Fundamental Theorem for Finitely Generated Modules over a PID.
Compare to the Fundamental Theorem for Finite Abelian Groups.

Theorem 3.9.5. Let R be a PID and let M be a finitely generated R-modle. Then
G is a direct sum of cyclic R-modules:

M ∼= R/d1R⊕ · · · ⊕R/dkR⊕Rn−k.

Proof. Let {m1, . . . ,mn} ⊆M be a generating set for M . The map f : Rn →
M given by f(r1, . . . , rn) =

∑
i rimi is a well-defined group epimorphism. We have

Ker(f) ⊆ Rn, so Proposition 3.9.1 yields an isomorphism h1 : Rk
∼=−→ Ker(f) for

some k 6 n. Let ε : Ker(f)→ Rn be the natural inclusion, and set h = εh1 : Rk →
Rn. Since h1 is an isomorphism and ε is a monomorphism, we know that h is a
monomorphism.

Proposition 3.9.3 yields a commutative diagram of group homomorphisms

Rk
h //

Φ ∼=
��

Rn

Ψ ∼=
��

Rk
h′ // Rn

such that [h′] = (di,j) where di,j = 0 when i 6= j. Let f1, . . . , fn ∈ Zn be the
standard basis. Then we have

M ∼= Rn/Ker(f) first isomorphism theorem

= Rn/ Im(h) construction of h

∼= Rn/ Im(h′) Proposition 3.9.4

= Rn/(d1,1f1, . . . , dk,kfk)R assumptions on h′

∼= R/d1,1R⊕ · · · ⊕R/dk,kR⊕ Zn−k Exercise.

This is the desired conclusion. �

3.10. Left Exactness of Hom

The next results says that HomR(N,−) and HomR(−, N) are left exact.

Theorem 3.10.1. Let R be a ring and let N be an R-module.

(a) Given an exact sequence

0→M ′
f ′−→M

f−→M ′′

of R-module homomorphisms, the induced sequence

0→ HomR(N,M ′)
f ′∗−→ HomR(N,M)

f∗−→ HomR(N,M ′′)

of homomorphisms of abelian groups is exact.
(b) Given an exact sequence

M ′
f ′−→M

f−→M ′′ → 0
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of R-module homomorphisms, the induced sequence

0→ HomR(M ′′, N)
f∗−→ HomR(M,N)

(f ′)∗−−−→ HomR(M ′, N)

of homomorphisms of abelian groups is exact.

Proof. We will verify part (a). The verification of part (b) is similar.
1. f ′∗ is 1-1. Let φ ∈ Ker(f ′∗) ⊆ HomR(N,M ′). Then 0 = f ′∗(φ) = f ′ ◦ φ. Since

f ′ is 1-1, it follows that φ = 0.
2. Ker(f∗) ⊇ Im(f ′∗). Proposition 3.6.3(c) provides the first equality in the

following sequence

f∗ ◦ f ′∗ = HomR(N, f ◦ f ′) = HomR(N, 0) = 0.

The second equality follows from the exactness of the original sequence. The third
equality is straightforward.

3. Ker(f∗) ⊆ Im(f ′∗). Let φ ∈ Ker(f∗) ⊆ HomR(N,M). Then 0 = f∗(φ) = f ◦φ
and it follows that Im(φ) ⊆ Ker(f) = Im(f ′). For every n ∈ N , this implies that
φ(n) = f ′(m′n) for some m′n ∈M ′. Furthermore, since f ′ is 1-1, the element m′n is
the unique element m′ ∈M ′ such that φ(n) = f ′(m′).

Define ψ : N →M ′ by the rule ψ(n) = m′n. This is well-defined by the previous
paragraph.

Claim: ψ is an R-module homomorpism. By definition, m′n1+n2
is the unique

element m′ ∈M ′ such that φ(n1 + n2) = f ′(m′). By assumption, we have

f ′(mn1
+mn2

) = f ′(mn1
) + f ′(mn2

) = φ(n1) + φ(n2) = φ(n1 + n2).

Hence, the uniqueness of m′n1+n2
implies that

ψ(n1 + n2) = m′n1+n2
= mn1

+mn2
= ψ(n1) + ψ(n2).

A similar argument shows that ψ(rn) = rψ(n).
Thus, we have ψ ∈ HomR(N,M ′). Now we show that f ′∗(ψ) = φ:

(f ′∗(ψ))(n) = f ′(ψ(n)) = f ′(m′n) = φ(n).

Hence, we have φ ∈ Im(f ′∗), and we are done. �

The next result says that HomR(Rn,−) is exact.

Proposition 3.10.2. Let R be a ring with identity, and let n > 0. Given an exact
sequence

M ′
f ′−→M

f−→M ′′

of R-module homomorphisms, the induced sequence

HomR(Rn,M ′)
f ′∗−→ HomR(Rn,M)

f∗−→ HomR(Rn,M ′′)

of homomorphisms of abelian groups is exact.

Proof. It is straightforward to show that the bottom row of the following
commutative diagram

HomR(Rn,M)′
f ′∗ //

ΦM′ ∼=
��

HomR(Rn,M)
f∗ //

ΦM ∼=
��

HomR(Rn,M ′′)

ΦM′′ ∼=
��

(M ′)n
(f ′)n // Mn fn // (M ′′)n

is exact; see Proposition 3.6.6. A diagram chase shows that the top row is exact. �
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The next example says that HomR(N,−) and HomR(−, N) are not usually
exact:

Example 3.10.3. Consider the sequence of Z-modules

0→ Z µ2−→ Z τ−→ Z/2Z→ 0 (∗)

where µ2(n) = 2n and τ(m) = m. This sequence is exact. However, the sequences
HomZ(Z/2Z, (∗)) and HomZ((∗),Z/2Z) are not exact, as follows.

To see that HomZ(Z/2Z, (∗)) is not exact, we need to show that the map

HomZ(Z/2Z,Z)
HomZ(Z/2Z,τ)−−−−−−−−−→ HomZ(Z/2Z,Z/2Z)

is not onto. We show that idZ/2Z : Z/2Z→ Z/2Z is not in Im(HomZ(Z/2Z, τ)). By
definition, it suffices to show that there does not exist a Z-module homomorphism
φ : Z/2Z→ Z making the following diagram commute.

Z/2Z
6∃φ

}}
=

��
Z τ // Z/2Z.

Note that the only Z-module homomorphism φ : Z/2Z→ Z is the zero map φ = 0,
and this map does not make the diagram commute. (Another way to see this:
The map φ would give a splitting of the sequence (∗), which would imply that
Z ∼= Z⊕ Z/2Z, which is impossible.)

To see that the sequence HomZ((∗),Z/2Z) is not exact, we need to show that
the map

HomZ(Z,Z/2Z)
HomZ(µ2,Z/2Z)−−−−−−−−−−→ HomZ(Z,Z/2Z)

is not onto. We show that τ : Z → Z/2Z is not in Im(HomZ(µ2,Z/2Z)). By
definition, it suffices to show that there does not exist a Z-module homomorphism
ψ : Z→ Z/2Z making the following diagram commute.

Z
µ2 //

τ

��

Z

6∃ψ}}
Z/2Z

Let ψ : Z/2Z→ Z. Then ψ(µ2(1)) = ψ(2) = 2ψ(1) = 0 6= τ(1), so ψ does not make
the diagram commute.

3.11. Projective Modules and Injective Modules

Definition 3.11.1. Let R be a ring. An R-module P is projective if HomR(P,−)
transforms arbitrary exact sequences into exact sequences.

Remark 3.11.2. Since HomR(M,−) is always left exact, a module P is projective
if and only if, for every R-module epimorphism f : M � M ′′ the induced map
HomR(P, f) : HomR(P,M)→ HomR(P,M ′′) is surjective.

Proposition 3.10.2 says that, when R has identity, the module Rn is projective.
The next result generalizes this.
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Proposition 3.11.3. Let R be a ring with identity, and let F be a free R-module.
Then F is projective.

Proof. It suffices to consider an exact sequence

M
g−→M ′′ → 0

and show that the resulting sequence

HomR(F,M)
HomR(F,g)−−−−−−−→ HomR(F,M ′′)→ 0

is exact. Fix an R-module homomorphism f ∈ HomR(F,M ′′) and consider the
diagram

F

f

��
∃h

}}
M

g // M ′′ // 0.

It suffices to find h making the diagram commute.
Let B ⊆ F be a basis for F as an R-module. The map g is surjective. For

each b ∈ B, choose an element mb ∈M such that g(mb) = f(b). Define h : F →M
by the formula h(

∑
b∈B rbb) =

∑
b∈B rbmb. Proposition 3.3.2.7 shows that h is a

well-defined R-module homomorphism. Also, we have

g(h(
∑
b∈B rbb)) = g(

∑
b∈B rbmb) =

∑
b∈B rbg(mb) =

∑
b∈B rbf(b) = f(

∑
b∈B rbb)

and so

f = gh = HomR(F, g)(h).

It follows that HomR(F, g) is surjective, as desired. �

The implication (iv) =⇒ (i) in the next result generalizes the previous result.
Note that the map h in condition (ii) need not be unique.

Proposition 3.11.4. Let R be a ring with identity, and let P be a unitary R-
module. TFAE.

(i) P is a projective R-module;
(ii) For every diagram of unitary R-module homomorphisms with exact bottom

row

P

f

��
M

g // M ′′ // 0

there is an R-module homomorphism h : P → M making the next diagram
commute

P

f

��
∃h

}}
M

g // M ′′ // 0.

(iii) Every exact sequence of the form 0→M ′ →M → P → 0 splits;
(iv) There is a unitary R-module M ′ such that P ⊕M ′ is free.
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Proof. (i) =⇒ (ii). Assume that P is projective and consider a diagram

P

f

��
M

g // M ′′ // 0

with exact bottom row. The fact that P is projective implies that the following
sequence is exact:

HomR(P,M)
HomR(P,g)−−−−−−−→ HomR(P,M ′′)→ 0.

The given map f is in HomR(P,M ′′), so there exists h ∈ HomR(P,M) such that

f = HomR(P, g)(h) = g ◦ h.

Hence h makes the desired diagram commute.
(ii) =⇒ (iii). Assume condition (ii) holds and consider an exact sequence

0→M ′ →M → P → 0. This gives a commutative diagram

P

idP
��

∃g1

~~
M

g // P // 0.

The map h satisfies gg1 = idP , so the sequence splits by Proposition 3.7.11.
(iii) =⇒ (iv). Proposition 3.3.4.11(a) a free R-module F and a surjection

τ : F →M . Condition (iii) implies that the exact sequence

0→ Ker(τ)→ F
τ−→ P → 0

splits, and so F ∼= Ker(τ)⊕ P .
(iv) =⇒ (i). Write F = P ⊕M ′. Proposition 3.11.3 shows that F is projective.

By an exercise, we know that

HomR(F,−) ∼= HomR(P ⊕M ′,−) ∼= HomR(P,−)⊕HomR(M ′,−).

Since HomR(F,−) transforms arbitrary exact sequences into exact sequences, an-
other exercise implies that the the same is true of HomR(P,−) and HomR(M ′,−).
In particular, P is projective. �

Here is an example of a ring with a non-free projective module.

Example 3.11.5. Let R1 and R2 be rings with identity and set R = R1×R2. The
modules P1 = R1 × 0 and P2 = 0 × R2 are both projective because P1 ⊕ P2

∼= R.
Note that P1 is not free because the element (0, 1) ∈ R is non-zero and (0, 1)P1 = 0.

Definition 3.11.6. Let R be a ring. An R-module I is injective if HomR(−, I)
transforms arbitrary exact sequences into exact sequences.

Remark 3.11.7. Since HomR(−, N) is always left exact, the module I is injective
if and only if, for every R-module monomorphism f : M ′ ↪→ M the induced map
HomR(f, I) : HomR(M, I)→ HomR(M ′, I) is surjective.

Proposition 3.11.8. Let R be a ring with identity, and let I be a unitary R-module.
TFAE.

(i) I is an injective R-module;
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(ii) For every diagram of unitary R-module homomorphisms with exact top row

0 // M ′
f //

g

��

M

I

there is an R-module homomorphism h : M → I making the next diagram
commute

0 // M ′
f //

g

��

M

∃h}}
I.

�

Remark 3.11.9. Note that the map h in condition (ii) need not be unique.
Also, note the absence of a condition corresponding to Proposition 3.11.4(iii)

and (iv). There is an analogue of (iii), but we do not have time to prove it. There
is no version of (iv).

Examples of injective modules are more difficult to construct. However, it can
be shown that the quotient field of a PID R is injective over R.

3.12. Tensor Product

Remark 3.12.1. Let R be a ring. The function µ : R × R given by µ(r, s) = rs
is not as well-behaved as one might like. For instance, it is not an R-module
homomorphism:

µ((1, 0) + (0, 1)) = µ(1, 1) = 1 6= 0 = µ(1, 0) + µ(0, 1).

In a sense, the tensor product fixes this problem.

Definition 3.12.2. Let R be a ring. Let M be a right R-module and let N be a left
R-module. Let G be an abelian group. A function f : M ×N → G is R-biadditive
if

f(m+m′, n) = f(m,n) + f(m′, n)

f(m,n+ n′) = f(m,n) + f(m,n′)

f(mr, n) = f(m, rn)

for all m,m′ ∈M all n, n′ ∈ N and all r ∈ R.

Example 3.12.3. Let R be a ring. The function µ : R×R given by µ(r, s) = rs is
the prototype of an R-biadditive function.

Definition 3.12.4. Let R be a ring. Let M be a right R-module and let N
be a left R-module. A tensor product of M and N over R is an abelian group
M ⊗R N equipped with an R-biadditive function h : M ×N →M ⊗R N satisfying
the following universal property: For every abelian group G and every R-biadditive
function f : M × N → G, there exists a unique abelian group homomorphism
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F : M ⊗R N → G making the following diagram commute

M ×N h //

f
&&

M ⊗R N

∃!F
��
G.

Theorem 3.12.5. Let R be a ring. Let M be a right R-module and let N be a left
R-module. Then M ⊗R N exists.

Proof. Existence. Consider Z(M×N), the free abelian group with basis M×N .
For m ∈M and n ∈ N , let (m,n) ∈ Z(M×N) denote the corresponding basis vector.
Let ε : M ×N → Z(M×N) be the function ε(m,n) = (m,n). Set

H =

 (m+m′, n)− (m,n)− (m′, n)
(m,n+ n′)− (m,n)− (m,n′)

(mr, n)− (m, rn)

∣∣∣∣∣∣
m,m′ ∈M
n,n′ ∈ N
r ∈ R

Z ⊆ Z(M×N).

Set M ⊗R N = Z(M×N)/H and, for m ∈M and n ∈ N write

m⊗ n = [(m,n)] = (m,n) +H ∈ Z(M×N)/H = M ⊗R N.

Define h : M ×N →M ⊗R N to be the composition

M ×N ε−→ Z(M×N) π−→ Z(M×N)/H = M ⊗R N

that is, by the rule h(m,n) = m⊗ n.
It is straightforward to show that h is well-defined and R-biadditive. For ex-

ample, we have

h(m+m′, n) = (m+m′)⊗ n
= [(m+m′, n)]

= [(m,n)] + [(m′, n)]

= m⊗ n+m′ ⊗ n
= h(m,n) + h(m′, n).

In terms of tensors, the R-biadditivity of h reads as

(m+m′)⊗ n = m⊗ n+m′ ⊗ n
m⊗ (n+ n′) = m⊗ n+m⊗ n′

(mr)⊗ n = m⊗ (rn)

Note also that elements of M ⊗R N are of the form

[
∑
i li(mi, ni)] =

∑
i li[(mi, ni)] =

∑
i li(mi ⊗ ni).

We’ll see later that, usually, there are elements of M ⊗R N that cannot be written
as “simple tensors”, that is, are not of the form m⊗ n.

To see that M⊗RN satisfies the desired universal property, let G be an abelian
group and f : M × N → G an R-biadditive function. Use the universal property



68 3. MODULE THEORY

for free modules Proposition 3.5.9 to see that there is a unique abelian group ho-
momorphism F1 : Z(M×N) → G such that F1(m,n) = f(m,n).

M ×N ε //

f
%%

Z(M×N)

∃!F1

��
G.

From the proof of Proposition 3.5.9, we have

F1(
∑
i li(mi, ni)) =

∑
i lif(mi, ni)).

Use this formula to check that each generator of H is in Ker(F1); this will use the
R-biadditivity of f . It follows that H ⊆ Ker(F1) and so the universal property
for quotients Proposition 3.3.11 implies that there exists a unique abelian group
homomorphism F : Z(M×N)/H → G making the right-hand triangle in the next
diagram commute

M ×N ε //

f
%%

Z(M×N)

∃!F1

��

π // Z(M×N)/H

∃!F
xx

M ⊗R N

G.

Thus, we see that the desired homomorphism F exists and is unique.
The above construction shows that F is given by the formula

F (
∑
i li(mi ⊗ ni)) = F ([

∑
i li(mi, ni)]) = F1(

∑
i li(mi, ni)) =

∑
i lif(mi, ni)).

�

Example 3.12.6. Let R be a ring. Let M be a right R-module and let N be a
left R-module. The computations in the proof of Theorem 3.12.5 show

(
∑
imiri)⊗ n =

∑
i(miri)⊗ n =

∑
imi ⊗ (rin)

for all mi ∈ M , all ri ∈ R and all n ∈ N . Other formulas hold similarly. In
particular, for li ∈ Z, we have∑

i li(mi ⊗ ni) =
∑
i((limi)⊗ ni) =

∑
im
′
i ⊗ ni

where m′i = limi.
The additive identity in M ⊗R N is 0M⊗N = 0M ⊗ 0N . This can be written

several (seemingly) different ways. For instance, for each n ∈ N , we have

0M ⊗ n = (0M0R)⊗ n = 0M ⊗ (0Rn) = 0M ⊗ 0N .

Similarly, for all m ∈M , we have m⊗ 0N = 0M ⊗ 0N .

Remark 3.12.7. Let R be a ring. Let M be a right R-module and let N be a left
R-module. It should be reiterated that there are more elements in M ⊗R N than
the simple tensors m⊗n. General elements of M ⊗RN are of the form

∑
imi⊗ni,

as was shown in Example 3.12.6. However, certain properties of M ⊗R N are
determined by their restrictions to the simple tensors, as we see in Lemma 3.12.8.

Lemma 3.12.8. Let R be a ring. Let M be a right R-module and let N be a left
R-module. Let γ, δ : M ⊗R N → G be a abelian group homomorphisms.

(a) M ⊗R N = 0 if and only if m⊗ n = 0 for all m ∈M and all n ∈ N .
(b) γ = δ if and only if γ(m⊗ n) = δ(m⊗ n) for all m ∈M and all n ∈ N .
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(c) If G = M ⊗R N , then γ = idM⊗RN if and only if γ(m ⊗ n) = m ⊗ n for all
m ∈M and all n ∈ N .

(d) γ = 0 if and only if γ(m⊗ n) = 0 for all m ∈M and all n ∈ N .

Proof. Part (a) follows from the fact that every element of M ⊗RN is of the
form

∑
imi ⊗ ni =

∑
i 0 = 0.

Part (b) can be proved similarly, or by using the uniqueness statement in the
universal property.

Part (c) can be proved similarly, or by using the uniqueness statement in the
universal property, or as the special case δ = idM⊗RN of part (b).

Part (d) can be proved similarly, or by using the uniqueness statement in the
universal property, or as the special case δ = 0 of part (b). �

When proving properties about tensor products, we very rarely use the con-
struction. Usually, we use the universal property, as in the following result.

Theorem 3.12.9. Let R be a ring. Let M be a right R-module and let N be a left
R-module. Then M ⊗R N is unique up to abelian group isomorphism.

Proof. Assume that h : M ×N →M ⊗R N and k : M ×N →M �R N both
satisfy the defining property for the tensor product, that is: M ⊗RN and M �RN
are abelian groups, the functions h and k are R-biadditive, and for every abelian
group G and every R-biadditive function f : M × N → G, there exists a unique
abelian group homomorphism F : M ⊗RN → G and H : M �RN → G making the
following diagrams commute

M ×N h //

f
&&

M ⊗R N

∃!F
��

M ×N k //

f
&&

M �R N

∃!H
��

G G.

Apply the universal property for M ⊗R N to the map k : M × N → M �R N to
find an abelian group homomorphism φ : M ⊗N →M �R N making the following
diagram commute

M ×N h //

k &&

M ⊗R N

∃!φ
��

M �R N.

Apply the universal property for M �R N to the map h : M × N → M ⊗R N to
find an abelian group homomorphism ψ : M ⊗N →M �RN making the following
diagram commute

M ×N k //

h &&

M �R N

∃!ψ
��

M ⊗R N.
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It follows that the next diagrams commute

M ×N h //

h &&

M ⊗R N

ψφ

��

M ×N h //

h &&

M ⊗R N

idM⊗RN

��
M ⊗R N M ⊗R N.

Hence, the uniqueness statement in the universal property implies that ψφ =
idM⊗RN . A similar argument shows that φψ = idM�RN and so φ and ψ are
inverse isomorphisms, as desired. �

Proposition 3.12.10. Let R be a ring with identity. Let M be a unital right R-
module and let N be a unital left R-module. There are abelian group isomorphisms

F : M ⊗R R
∼=−→M and G : R⊗R N

∼=−→ N

such that F (m⊗ r) = mr and G(r⊗n) = rn. In particular, we have M ⊗RR ∼= M
and R⊗R N ∼= N and R⊗R R ∼= R.

Proof. We will verify the claim for M ⊗RR. The map f : M ×R→M given
by f(m, r) = mr is R-biadditive. Hence, the universal property yields a unique R-
module homomorphism F : M ⊗RR→M such that F (m⊗ r) = mr for all m ∈M
and r ∈ R. We will show that F is bijective. The main point is the following
computation in M ⊗R R∑

i(mi ⊗ ri) =
∑
i((miri)⊗ 1) = (

∑
imiri)⊗ 1

which shows that every element of M ⊗R R is of the form m⊗ 1.
F is surjective: m = F (m⊗ 1).
F is injective: 0 = F (m ⊗ 1) implies 0 = F (m ⊗ 1) = m · 1 = m implies

0 = 0⊗ 1 = m⊗ 1. �

Remark 3.12.11. Note that we have not shown that the isomorphisms in Propo-
sition 3.12.10 are R-module isomorphisms. This is because we have not shown, for
instance, that M ⊗R R has an R-module structure. However, because R is also a
right R-module (technically, it is an “RR-bimodule”) it follows that M ⊗R R has
a right R-module structure given by (m ⊗ r)r′ = m ⊗ (rr′). Furthermore, this
structure makes the isomorphism F into a homomorphism of right R-modules.

We will address this in the case when R is commutative in the exercises.

Remark 3.12.12. It should be noted that other tensor products of R with itself,
like R⊗Z R are not usually so simple. In fact, even when R is noetherian, the ring
R⊗Z R is often not noetherian.

Here is the functoriality of tensor product.

Proposition 3.12.13. Let R be a ring. Let α : M → M ′ and α′ : M ′ → M ′′

be homomorphisms of right R-modules. Let β : N → N ′ and β′ : N ′ → N ′′ be
homomorphisms of left R-modules.

(a) There exists a unique abelian group homomorphism α⊗Rβ : M⊗RN →M ′⊗R
N ′ such that (α⊗R β)(m⊗ n) = α(m)⊗R β(n) for all m ∈M and all n ∈ N .



3.12. TENSOR PRODUCT 71

(b) The following diagram commutes

M ⊗R N
α⊗Rβ //

(α′α)⊗R(β′β) ''

M ′ ⊗R N ′

α′⊗Rβ′

��
M ′′ ⊗R N ′′

In other words, we have (α′ ⊗R β′)(α⊗R β) = (α′α)⊗R (β′β).

Proof. (a) We use the universal property. Define f : M ×N →M ′ ⊗R N ′ by
the formula f(m,n) = α(m) ⊗ β(n). In other words, f is the composition M ×
N

α×β−−−→M ′×N ′ h
′

−→M ′⊗RN ′ where h′ is the appropriate universal biadditive map.
Since α and β are R-module homomorphisms, it is straightforward to show that f is
R-biadditive. The universal property yields a unique abelian group homomorphism
α⊗R β : M ⊗R N →M ′ ⊗R N ′ such that

(α⊗R β)(m⊗ n) = f(m,n) = α(m)⊗R β(n)

for all m ∈M and all n ∈ N .
(b) By definition, we have

(α′ ⊗R β′)((α⊗R β)(m⊗ n)) = (α′ ⊗R β′)(α(m)⊗R β(n))

= α′(α(m))⊗R β′(β(n))

= (α′α)⊗R (β′β)(m⊗ n).

Now apply Lemma 3.12.8(b). �

Notation 3.12.14. Continue with the notation of Proposition 3.12.13. We write

M ⊗R β = idM ⊗Rβ : M ⊗R N →M ⊗R N ′

α⊗R N = α⊗R idN : M ⊗R N →M ′ ⊗R N.

Remark 3.12.15. Let R be a ring. Let M be a right R-module and let N be a left
R-module. It is straightforward to show that idM ⊗RN = idM⊗RN : M ⊗R N →
M ⊗R N . Proposition 3.12.13(b) then shows that M ⊗R − and − ⊗R N respect
compositions.

Next, we go for exactness properties.

Proposition 3.12.16. Let f : M → M ′ be an epimorphism of right R-modules,
and let g : N → N ′ be an epimorphism of left R-modules

(a) The map f ⊗R g : M ⊗R N →M ′ ⊗R N ′ is surjective.
(b) Ker(f ⊗R g) is generated as an abelian group by the set

L = {m⊗ n ∈M ⊗R N | f(m) = 0 or g(n) = 0} ⊆M ⊗R N.

Proof. (a) We compute directly: For an arbitrary element
∑
im
′
i ⊗ n′i ∈

M ′ ⊗R N ′, we have∑
im
′
i ⊗ n′i =

∑
i f(mi)⊗ g(ni) = (f ⊗R g)(

∑
imi ⊗ ni).

(b) Let K denote the subgroup of M ⊗R N generated by the set L. Each
generator of K is in Ker(f ⊗R g), and so K ⊆ Ker(f ⊗R g). Hence, we have a
well-defined abelian group epimorphism φ : (M ⊗R N)/K → M ′ ⊗R N ′ such that
φ(m⊗ n) = f(m)⊗ g(n). To show that K = Ker(f ⊗R g), it suffices to show that
φ is injective.
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Define a map h : M ′×RN ′ → (M⊗RN)/K as follows: for (m′, n′) ∈M ′×RN ′,
fix m ∈ M and n ∈ N such that f(m) = m′ and g(n) = n′, and set h(m′, n′) =
m⊗ n. We need to show this is well-defined. Assume f(m1) = m′ = f(m) and
g(n1) = n′ = g(n). Then m1−m ∈ Ker(f) and n1−n ∈ Ker(g) and so in M ⊗RN
we have

m1 ⊗ n1 = (m1 −m)⊗ (n1 − n)

= (m1 −m)⊗ (n1 − n) + (m1 −m)⊗ n+m⊗ (n1 − n)︸ ︷︷ ︸
∈K

+m⊗ n.

It follows that, in (M⊗RN)/K, we have m1 ⊗ n1 = m⊗ n and so h is well-defined.
We check that h is R-biadditive. For instance, we want h(m′1 + m′2, n

′) =
h(m′1, n

′)+h(m′2, n
′). Fix m1,m2 ∈M and n ∈ N such that f(m1) = m′1, f(m2) =

m′2 and g(n) = n′. Then f(m1 +m2) = m′1 +m′2 and so

h(m′1 +m′2, n
′) = (m1 +m2)⊗ n = m1 ⊗ n+m2 ⊗ n = h(m′1, n

′) + h(m′2, n
′).

The other conditions are verified similarly.
Since h is R-biadditive, the universal property for tensor products yields a

well-defined abelian group homomorphism H : M ′ ⊗R N ′ → (M ⊗R N)/K such
that H(m′ ⊗ n′) = h(m′, n′) for all m′ ∈M ′ and all n′ ∈ N ′. In other words,

H(m′ ⊗ n′) = m⊗ n

where m ∈M and n ∈ N are such that f(m) = m′ and g(n) = n′. It follows readily
that the composition Hφ : (M ⊗R N)/K → (M ⊗R N)/K is id(M⊗RN)/K , and so
φ is injective as desired. �

Here is the right-exactness of the tensor product.

Proposition 3.12.17. Let R be a ring, M a right R-module and N a left R-module.

(a) For each an exact sequence of left R-modules N ′
g′−→ N

g−→ N ′′ → 0 the associ-
ated sequence of abelian groups

M ⊗R N ′
M⊗Rg′−−−−−→M ⊗R N

M⊗Rg−−−−→M ⊗R N ′′ → 0

is exact.

(b) For each an exact sequence of right R-modules M ′
f ′−→ M

f−→ M ′′ → 0 the
associated sequence of abelian groups

M ′ ⊗R N
f ′⊗RN−−−−−→M ⊗R N

f⊗RN−−−−→M ′′ ⊗R N → 0

is exact.

Proof. (a) Because g is surjective, Proposition 3.12.16(a) implies that M⊗Rg
is surjective. Also, we have

(M ⊗R g)(M ⊗R g′) = M ⊗R (gg′) = M ⊗R 0 = 0

and so Im(M ⊗R g′) ⊆ Ker(M ⊗R g). To show Im(M ⊗R g′) ⊇ Ker(M ⊗R g),
it suffices to show that every generator of Ker(M ⊗R g) is in Im(M ⊗R g′). By
Proposition 3.12.16(b), Ker(M ⊗R g) is generated by {m⊗ n | g(n) = 0}. For each
m⊗n ∈M ⊗RN such that g(n) = 0, there exists n′ ∈ N ′ such that g′(n′) = n and
so m⊗ n = (M ⊗R g′)(m⊗ n′) ∈ Im(M ⊗R g′).

Part (b) is similar. �
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In general, the tensor product is not left exact.

Example 3.12.18. Let µ : Z → Z be the monomorphism given by n 7→ 2n. It is
straightforward to show that the following diagram commutes

(Z/2Z)⊗Z Z F
∼=
//

(Z/2Z)⊗µ
��

Z/2Z

µ

��
(Z/2Z)⊗Z Z F

∼=
// Z/2Z

where µ(n) = µ(n) = 2n = 0. It follows that µZ
2 ⊗Z idZ/2Z = 0. This map is not

injective because (Z/2Z)⊗Z Z ∼= Z/2Z.

Definition 3.12.19. Let R be a ring. A right R-module M is flat if the functor
M ⊗R − is exact. A left R-module N is flat if −⊗R N transforms arbitrary exact
sequences into exact sequences.

Example 3.12.20. Let R be a ring with identity. Then R is flat as a left R-module
and as a right R-module. More generally any projective R-module is flat.

3.13. Localization

Localization generalizes the construction of the field of fractions of an integral
domain. It will also give us examples of flat R-modules that are not projective.

Definition 3.13.1. Let R be a commutative ring with identity. A subset S ⊆ R
is multiplicatively closed if 1 ∈ S and ss′ ∈ S for all s, s′ ∈ S.

Here are the prototypical examples of multiplicatively closed subsets.

Example 3.13.2. Let R be a commutative ring with identity. For each s ∈ R, the
set {1, s, s2, . . .} ⊆ R is multiplicatively closed. For each prime ideal p ⊂ R, the set
Rr p ⊂ R is multiplicatively closed. For instance, if R is an integral domain, then
the set of non-zero elements of R is multiplicatively closed.

Construction 3.13.3. Let R be a commutative ring with identity, and let S ⊆ R
be multiplicatively closed. Define a relation ∼ on R× S as follows: (r, s) ∼ (r′, s′)
if there exists s′′ ∈ S such that s′′(rs′− r′s) = 0. Check that this is an equivalence
relation on R× S.

The localization S−1R is then the set of all equivalence classes under this rela-
tion S−1R = (R × S)/ ∼ where the equivalence class of (r, s) in S−1R is denoted
r/s or r

s . If t ∈ S, then the definition implies (r, s) ∼ (rt, st); this translates to the

cancellation formula rt
st = r

s .

For elements r/s, t/u ∈ S−1R, set

r

s
+
t

u
=
ru+ ts

su
and

r

s

t

u
=
rt

su
.

When p ⊂ R is a prime ideal and S = Rr p, we write Rp in lieu of S−1R.

Example 3.13.4. Let R be an integral domain, and set S = {r ∈ R | r 6= 0}.
Then S−1R is the quotient field of R.

Proposition 3.13.5. Let R be a commutative ring with identity, and let S ⊆ R be
multiplicatively closed.



74 3. MODULE THEORY

(a) S−1R is a commutative ring with identity, with 0S−1R = 0R/1R = 0/s and
1S−1R = 1R/1R = s/s for all s ∈ S.

(b) The assignment f : R→ S−1R given by r 7→ r/1 is a homomorphism of rings
with identity.

Proof. Argue as in the proof of Proposition 2.4.2. The main point is to show
that the addition and multiplication on S−1R are well-defined; the other ring-
axioms are then easily verified. Assume that r/s = r′/s′ and t/u = t′/u′, that is,
s′′(rs′ − r′s) = 0 = u′′(tu′ − t′u) for some s′′, u′′ ∈ S. Then

ru+ ts

su
=

(ru+ ts)s′s′′u′u′′

(su)s′s′′u′u′′
=
rs′s′′uu′u′′ + tu′u′′ss′s′′

ss′s′′uu′u′′

=
r′ss′′uu′u′′ + t′uu′′ss′s′′

ss′s′′uu′u′′
=

(r′u′ + t′s)ss′′uu′′

(s′u′)ss′′uu′′
=
r′u′ + t′s

s′u′

so addition is well-defined. The equality rt
su = r′t′

s′u′ is even easier to verify, showing
that multiplication is well-defined. �

Construction 3.13.6. Let R be a commutative ring with identity, and let S ⊆ R
be multiplicatively closed. Let M be a unital R-module. Define a relation ∼ on
M×S as follows: (m, s) ∼ (m′, s′) if there exists s′′ ∈ S such that s′′(ms′−m′s) = 0.
Check that this is an equivalence relation on M × S.

The localization S−1M is then the set of all equivalence classes under this
relation S−1M = (M × S)/ ∼ where the equivalence class of (m, s) in S−1M is
denoted m/s or m

s . If t ∈ S, then the definition implies (m, s) ∼ (tm, ts); this

translates to the cancellation formula tm
ts = m

s .

For elements m/s, n/u ∈ S−1M and r/v ∈ S−1R, set

m

s
+
n

u
=
um+ sn

su
and

r

v

m

s
=
rm

vs
.

When p ⊂ R is a prime ideal and S = Rr p, we write Mp in lieu of S−1M .

Proposition 3.13.7. Let R be a commutative ring with identity, and let S ⊆ R be
multiplicatively closed. Let f : M → N be a homomorphism of unital R-modules.

(a) S−1M is a unital S−1R-module, with 0S−1M = 0M/1R = 0M/s for all s ∈ S.
(b) S−1M is a unital R-module, with action r(m/s) = (rm)/s.
(c) The assignment gM : M → S−1M given by m 7→ m/1 is a homomorphism of

unital R-modules.
(d) The assignment S−1f : S−1M → S−1N given by m/s 7→ f(m)/s is a homo-

morphism of unital S−1R-modules making the following diagram commute

M
f //

gM
��

N

gN
��

S−1M
S−1f // S−1N.

(e) The operator S−1(−) respects compositions and transforms arbitrary exact
sequences of R-module homomorphisms into exact sequences of S−1R-module
homomorphisms.

Proof. Parts (a) and (b) are proved as in Proposition 3.13.5. Most of the
remaining parts are exercises in applying the definitions. We explain the well-
definedness of S−1f and the exactness of S−1(−).
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To see that S−1f is well-defined, let m/s = n/t ∈ S−1M . Then there exists
u ∈ S such that utm = usn, and so

utf(m) = f(utm) = f(usn) = usf(n).

It follows that
f(m)

s
=
utf(m)

uts
=
usf(n)

ust
=
f(n)

t
in S−1N , as desired.

To see that S−1(−) is exact, consider an exact sequence of R-modules

M
f−→ N

g−→ L.

We need to show that the sequence

S−1M
S−1f−−−→ S−1N

S−1g−−−→ S−1L

is exact. The functoriality of S−1(−) implies

(S−1g) ◦ (S−1f) = S−1(g ◦ f) = S−1(0) = 0

and so Im(S−1f) ⊆ Ker(S−1g). For the reverse containment, let n/s ∈ Ker(S−1g).
Then

0/1 = 0 = (S−1g)(n/s) = g(n)/s

so there exists t ∈ S such that

g(tn) = tg(n) = ts0 = 0.

The exactness of the original sequence yields an element m ∈M such that f(m) =
tn. It follows that

n/s = tn/ts = f(m)/ts = (S−1f)(m/ts) ∈ Im(S−1f)

as desired. �

Proposition 3.13.8. Let R be a commutative ring with identity, and let S ⊆ R be
multiplicatively closed. Let M be a unital R-modules.

(a) Every element of (S−1R)⊗RM is of the form r
s ⊗m for some r ∈ R and s ∈ S

and m ∈M .
(b) Given an R-module homomorphism g : M → M ′ there is a commutative dia-

gram of abelian group homomorphisms

(S−1R)⊗RM
(S−1R)⊗g //

∼= F
��

(S−1R)⊗RM ′

∼= F ′

��
S−1M

S−1g // S−1M ′

where F ((r/s)⊗m) = (rm)/s and F ′((r/s)⊗m′) = (rm′)/s.
(c) S−1R is a flat R-module.

Proof. (a) Fix an element
∑
i
ri
ui
⊗mi ∈ (S−1R) ⊗R M . Set u =

∏
i ui and

u′i =
∏
j 6=i uj . Then u = u′iui and so∑

i
ri
ui
⊗mi =

∑
i
u′iri
u′iui
⊗mi =

∑
i

1
u ⊗ (u′irimi) = 1

u ⊗ (
∑
i u
′
irimi) .

(b) The universal mapping property for tensor products shows that the map
F : S−1R⊗RM → S−1M given by F

(
r
u ⊗m

)
= rm

u is a well-defined abelian group
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homomorphism. The map F is surjective: m
u = F

(
1
u ⊗ m

)
. To see that F is

injective, fix ξ ∈ Ker(F ). Part (a) implies that ξ = r
u ⊗ m for some r ∈ R and

u ∈ S and m ∈M . Then 0 = F
(
r
u ⊗m

)
= rm

u implies that there exists an element
u′ ∈ S such that u′rm = 0. Hence, we have

r
u ⊗m = ru′

uu′ ⊗m = 1
uu′ ⊗ (ru′m) = 1

uu′ ⊗ (0) = 0.

To show that the isomorphism is natural, let g : M → M ′ be an R-module
homomorphism. We need to show that the following diagram commutes:

(S−1R)⊗RM
(S−1R)⊗g //

∼= F
��

(S−1R)⊗RM ′

∼= F ′

��
S−1M

S−1g // S−1M ′

where the vertical maps are the isomorphisms from the previous paragraph. We

have S−1g
(
m
u

)
= g(m)

u , and so

F ′(((S−1R)⊗R g)( ru ⊗m)) = F ′( ru ⊗ g(m))

= rg(m)
u

= g(rm)
u

= (S−1g)( rmu )

= (S−1g)(F ( ru ⊗m)).

(c) The functor S−1(−) ∼= (S−1R)⊗R − is exact by Proposition 3.13.7(e), and
so S−1R is flat by definition. �
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