Math 314/814-002 Exam 1

Salmon Exam Solutions

October 9, 2008
Instructor: Dr. S. Cooper

Name:

\qquad

Read each question carefully.
Be sure to show all of your work and not just your final conclusion. You may not use your notes or text for this exam, but you may use a calculator. Good Luck!

Problem	Points	Score
1	10	
2	10	
3	12	
4	6	
5	8	
6	12	
7	11	
8	15	
9	4	
10	12	
\sum	100	

(1) Let $\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{r}1 \\ 0 \\ -2\end{array}\right], \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{r}5 \\ 1 \\ -7\end{array}\right], \mathbf{v}_{\mathbf{3}}=\left[\begin{array}{r}-3 \\ -2 \\ 0\end{array}\right]$, and $\mathbf{w}=\left[\begin{array}{r}-4 \\ -1 \\ 5\end{array}\right]$.

Is \mathbf{w} in $\operatorname{Span}\left(\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right)$? If yes, then express \mathbf{w} as a linear combination of $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}$.

Solution: We want to know if there exist scalars c_{1}, c_{2}, c_{3} such that

$$
\mathbf{w}=c_{1} \mathbf{v}_{\mathbf{1}}+c_{2} \mathbf{v}_{\mathbf{2}}+c_{3} \mathbf{v}_{\mathbf{3}}
$$

This is the same as asking if the system $A \mathbf{x}=\mathbf{w}$ is solvable, where A is the 3×3 matrix whose columns are $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}$ and $\mathbf{x}=\left[\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right]$. We row reduce the augmented matrix of this system:

$$
\begin{array}{rrr|r}
{\left[\begin{array}{rrr|r}
1 & 5 & -3 & -4 \\
0 & 1 & -2 & -1 \\
-2 & -7 & 0 & \mid
\end{array}\right]}
\end{array} \underset{\substack{ \\
R_{3} \rightarrow R_{3}-3 R_{2}}}{\xrightarrow{R_{3}+2 R_{1}}}\left[\begin{array}{rrr|r}
1 & 5 & -3 & -4 \\
0 & 1 & -2 & \mid \\
0 & 3 & -6 & -1 \\
\hline
\end{array}\right]
$$

We see that the system is consistent. Thus, \mathbf{w} is in $\operatorname{Span}\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$.
To write \mathbf{w} as a linear combination of $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}$, we simply solve the system. Note that c_{3} is a free variable. So, let $c_{3}=t \in \mathbb{R}$. Then

$$
\begin{aligned}
c_{2} & =2 c_{3}-1=2 t-1 \\
c_{1} & =-5 c_{2}+3 c_{3}-4=-7 t+1
\end{aligned}
$$

Letting $t=1$, we see that

$$
\mathbf{w}=-6 \mathbf{v}_{\mathbf{1}}+\mathbf{v}_{\mathbf{2}}+\mathbf{v}_{\mathbf{3}}
$$

(2) (a) Let $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{k}}$ be vectors in \mathbb{R}^{n}. Complete the definition:
$\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{k}}$ are linearly dependent if
Solution: there exist scalars $c_{1}, \ldots c_{k}$ not all zero such that

$$
c_{1} \mathbf{v}_{\mathbf{1}}+c_{2} \mathbf{v}_{\mathbf{2}}+\cdots+c_{k} \mathbf{v}_{\mathbf{k}}=\mathbf{0} .
$$

(b) Let $\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right], \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right]$, and $\mathbf{v}_{\mathbf{3}}=\left[\begin{array}{r}3 \\ 0 \\ -3\end{array}\right]$.

Are $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}$ linearly dependent? If so, state a dependence relation.
Hint: You may assume that $\left[\begin{array}{rrr}1 & 4 & 3 \\ 2 & 5 & 0 \\ 3 & 6 & -3\end{array}\right]$ row reduces to $\left[\begin{array}{rrr}1 & 0 & -5 \\ 0 & 1 & 2 \\ 0 & 0 & 0\end{array}\right]$.
Solution: Since the system $\left[\begin{array}{lll}\mathbf{v}_{\mathbf{1}} & \mathbf{v}_{\mathbf{2}} & \mathbf{v}_{\mathbf{3}}\end{array}\right] \mathbf{x}=\mathbf{0}$ has a nontrivial solution (i.e. a free variable exists), the vectors $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$ are linearly dependent. We can read off a dependence relation from the reduced matrix:

$$
\mathbf{v}_{\mathbf{3}}=-5 \mathbf{v}_{\mathbf{1}}+2 \mathbf{v}_{\mathbf{2}}
$$

(3) Find all the values of k such that the linear system

$$
\begin{aligned}
y+2 k z & =0 \\
x+2 y+6 z & =2 \\
k x+2 z & =1
\end{aligned}
$$

has (i) no solution; (ii) a unique solution; (iii) infinitely many solutions. Show all of your work, labeling each row operation you use.

Solution: We row reduce the augmented matrix associated with the system:

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
0 & 1 & 2 k & 0 \\
1 & 2 & 6 & \mid \\
k & 0 & 2 & 1
\end{array}\right] \xrightarrow{R_{1 \leftrightarrow R_{2}}}\left[\begin{array}{ccc|c}
1 & 2 & 6 & 2 \\
0 & 1 & 2 k & 0 \\
k & 0 & 2 & 1
\end{array}\right]} \\
& \xrightarrow{R_{3} \rightarrow R_{3}-k R_{1}}\left[\begin{array}{ccc:c}
1 & 2 & 6 & 2 \\
0 & 1 & 2 k & 0 \\
0 & -2 k & (2-6 k) & (1-2 k)
\end{array}\right] \\
& \xrightarrow{R_{3} \rightarrow R_{3}+2 k R_{2}}\left[\begin{array}{ccc:c}
1 & 2 & 6 & 2 \\
0 & 1 & 2 k & 0 \\
0 & 0 & \left(4 k^{2}-6 k+2\right) & (1-2 k)
\end{array}\right]
\end{aligned}
$$

Note that $4 k^{2}-6 k+2=2(2 k-1)(k-1)$.

Answers:

No Solution: $k=1$

Unique Solution: all k in \mathbb{R} except $k=1 / 2, k=1$

Infinitely Many Solutions: $\underline{k=1 / 2}$
(4) Consider the transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ defined by

$$
T\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{c}
x-y \\
x y \\
2 x
\end{array}\right]
$$

Is T linear? If yes, then verify this using the definition. If not, give an explicit example for which one of the linearity properties fails.

Solution: T is not linear. Note that

$$
T\left(2\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)=T\left[\begin{array}{l}
2 \\
2
\end{array}\right]=\left[\begin{array}{l}
0 \\
4 \\
4
\end{array}\right] \neq 2 T\left[\begin{array}{l}
1 \\
1
\end{array}\right]=2\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
0 \\
2 \\
4
\end{array}\right]
$$

(5) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be the linear transformation defined by

$$
T\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
2 x-3 y \\
5 x+6 y
\end{array}\right]
$$

Find the standard matrix of T.

Solution: We have

$$
T\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
2 \\
5
\end{array}\right], T\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{r}
-3 \\
6
\end{array}\right], T\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

So, the standard matrix of T is

$$
\left[\begin{array}{rrr}
2 & -3 & 0 \\
5 & 6 & 0
\end{array}\right]
$$

(6) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the invertible linear transformation with standard matrix

$$
A=\left[\begin{array}{rrr}
1 & 0 & 3 \\
-1 & 1 & 4 \\
0 & 0 & 1
\end{array}\right]
$$

(a) Find A^{-1}.

Solution: We row reduce the multi-augmented matrix $\left[A \mid I_{3}\right]$ to $\left[I_{3} \mid A^{-1}\right]$:

$$
\begin{aligned}
{\left[\begin{array}{rrrrrrr}
1 & 0 & 3 & \vdots & 1 & 0 & 0 \\
-1 & 1 & 4 & \vdots & 0 & 1 & 0 \\
0 & 0 & 1 & \vdots & 0 & 0 & 1
\end{array}\right] } & \rightarrow\left[\begin{array}{rrrrrrr}
1 & 0 & 3 & \vdots & 1 & 0 & 0 \\
0 & 1 & 7 & \vdots & 1 & 1 & 0 \\
0 & 0 & 1 & \vdots & 0 & 0 & 1
\end{array}\right] \\
& \rightarrow\left[\begin{array}{llllllr}
1 & 0 & 0 & \vdots & 1 & 0 & -3 \\
0 & 1 & 7 & \vdots & 1 & 1 & 0 \\
0 & 0 & 1 & \vdots & 0 & 0 & 1
\end{array}\right] \\
& \rightarrow\left[\begin{array}{lllllll}
1 & 0 & 0 & \vdots & 1 & 0 & -3 \\
0 & 1 & 0 & \vdots & 1 & 1 & -7 \\
0 & 0 & 1 & \vdots & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

We conclude that

$$
A^{-1}=\left[\begin{array}{rrr}
1 & 0 & -3 \\
1 & 1 & -7 \\
0 & 0 & 1
\end{array}\right]
$$

(b) Find $T^{-1}\left(\left[\begin{array}{r}1 \\ 2 \\ -1\end{array}\right]\right)$.

Solution: The standard matrix of T^{-1} is A^{-1}. Thus.

$$
T^{-1}\left(\left[\begin{array}{r}
1 \\
2 \\
-1
\end{array}\right]\right)=A^{-1}\left[\begin{array}{r}
1 \\
2 \\
-1
\end{array}\right]=\left[\begin{array}{rrr}
1 & 0 & -3 \\
1 & 1 & -7 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{r}
1 \\
2 \\
-1
\end{array}\right]=\left[\begin{array}{r}
4 \\
10 \\
-1
\end{array}\right] .
$$

(7) (a) Define what it means for a subset H to be a subspace of \mathbb{R}^{n}.

Solution: H is a subspace if it is satisfies 3 properties:
(i) The zero vector of \mathbb{R}^{n} is in H;
(ii) For every \mathbf{x}, \mathbf{y} in H, the vector $\mathbf{x}+\mathbf{y}$ is also in H (i.e. H is closed under vector addition);
(iii) For every \mathbf{x} in H and every $c \in \mathbb{R}$, the vector $c \mathbf{x}$ is also in H (i.e. H is closed under scalar multiplication).
(b) Is $H=\left\{\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \in \mathbb{R}^{3}: x=4 z\right\}$ a subspace of \mathbb{R}^{3} ?

Justify your answer (i.e. either verify the definition or give a specific example where one of the conditions fails).

Solution: H is a subspace of \mathbb{R}^{3}. We verify the 3 properties of the definition above.
$\bullet \mathbf{0}=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ is in H since $0=4(0)$.

- Let $\mathbf{u}=\left[\begin{array}{c}4 t \\ y \\ t\end{array}\right], \mathbf{v}=\left[\begin{array}{c}4 s \\ l \\ s\end{array}\right]$ be two vectors in H. Then

$$
\mathbf{u}+\mathbf{v}=\left[\begin{array}{c}
4 t+4 s \\
y+l \\
t+s
\end{array}\right]
$$

Since $4 t+4 s=4(t+s)$, the vector $\mathbf{u}+\mathbf{v}$ is also in H.

- Let d be any real scalar and $\mathbf{u}=\left[\begin{array}{c}4 t \\ y \\ t\end{array}\right]$ be any vector in H. Then

$$
d \mathbf{u}=\left[\begin{array}{c}
d 4 t \\
d y \\
d t
\end{array}\right]
$$

Since $d 4 t=4(d t)$, the vector $d \mathbf{u}$ is also in H.
(8) Let $A=\left[\begin{array}{rrrrr}1 & 2 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & -1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 1\end{array}\right]$. You may assume that $R R E F(A)=\left[\begin{array}{rrrrr}1 & 0 & -1 & 0 & -1 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$.
(a) Find a basis for the null space of A.

Solution: We solve the system $A \mathbf{x}=\mathbf{0}$. We see that x_{3} and x_{5} are free variables. Let $x_{3}=s$ and $x_{5}=t$, where s, t are arbitrary real numbers. Then $x_{1}=x_{3}+x_{5}=s+t, x_{2}=-x_{3}-x_{5}=-s-t$ and $x_{4}=-x_{5}=-t$. Thus

$$
N u l l(A)=\left\{s\left[\begin{array}{r}
1 \\
-1 \\
1 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{r}
1 \\
-1 \\
0 \\
-1 \\
1
\end{array}\right]: s, t \in \mathbb{R}\right\}
$$

So, a basis for the null space of A is

$$
\left\{\left[\begin{array}{r}
1 \\
-1 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{r}
1 \\
-1 \\
0 \\
-1 \\
1
\end{array}\right]\right\}
$$

(b) Find a basis for the column space of A.

Solution: We take the columns of A which correspond to pivot columns of B. Thus, a basis for $\operatorname{col}(A)$ is

$$
\left\{\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right]\right\}
$$

(c) $\operatorname{rank}(A)=\underline{3}$
(d) $\operatorname{dim}(\operatorname{Null}(A))=\underline{2}$
(e) $\operatorname{dim}(\operatorname{row}(A))=\underline{3}$
(9) Let A be an $m \times n$ matrix. Prove that $A A^{T}$ is symmetric.

Solution: We need to show that the transpose of $A A^{T}$ is itself. Using properties from class, we have

$$
\left(A A^{T}\right)^{T}=\left(A^{T}\right)^{T} A^{T}=A A^{T}
$$

(10) Are the following statements true or false? Carefully justify your answers.
(a) Let B be an invertible matrix. Then $\left(B^{T} B\right)^{-1}=B^{-1}\left(B^{-1}\right)^{T}$.

Solution: This statement is true. Using properties from class, we have

$$
\left(B^{T} B\right)^{-1}=B^{-1}\left(B^{T}\right)^{-1}=B^{-1}\left(B^{-1}\right)^{T}
$$

(b) Let A be a 3×4 matrix. If $\operatorname{col}(A)=\mathbb{R}^{3}$, then the column vectors of A must be linearly independent.

Solution: This statement is false. If $\operatorname{col}(A)=\mathbb{R}^{3}$, then the rank of A must equal 3. This means that there is a free variable when we consider the system $A \mathbf{x}=\mathbf{0}$. Thus, the columns of A must be linearly dependent. For an example, consider the matrix

$$
A=\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

(c) Let A be a 99×99 matrix. It is possible that the null space and column space of A are the same subspaces of \mathbb{R}^{99}.

Solution: If $\operatorname{null}(A)=\operatorname{col}(A)$, then $\operatorname{nullity}(A)=\operatorname{dim}(\operatorname{col}(A))=\operatorname{rank}(A)$. If this were the case, then

$$
99=\operatorname{nullity}(A)+\operatorname{Rank}(A)=2 \operatorname{Rank}(A)
$$

by the Rank Theorem. Since 99 is odd and the dimension of a subspace must be an integer, this is impossible.
(d) Suppose that A and B are $n \times n$ invertible matrices. Then the rank of $A B$ equals n.

Solution: This statement is true. If A and B are $n \times n$ invertible matrices, then $A B$ is an $n \times n$ invertible matrix. So, by the Fundamental Theorem for Invertible Matrices, $\operatorname{rank}(A B)=n$.

