Math 918 — The Power of Monomial Ideals

Problem Set 1 Solutions
Due: Tuesday, February 16

(1) Let S = klxy,...,x,| where k is a field. Fix a monomial order >, on ZZ,.

(a)

Show that multideg(fg) = multideg( f)+ multideg(g) for non-zero polynomials f,g € S.

Proof. Say multideg(f) = ay and multideg(g) = 8,. Then we can write
f=agx* + Z (o X*

acl
g = boxﬂo + Z bﬂX’B
Bel’

where I and I’ are some index sets and ag, by, aq, bg are in the field k. Since f and g
are non-zero, we know that ay and by are non-zero. Furthermore, by the definition of
multidegree, g >, @ and B, >, B for all @ € I and for all 8 € I'. We have

fg = agbox®TPo 4 g Z bex* P 4 by Z x> Po + Z aabpx® P,
Belr’ acl acl,pel’

Since >, is a monomial order, relative ordering of terms is preserved when we multiply
monomials. In particular,

a+ By >, a0+ B>, a+ B
and

o)+ By >.a+ By >, a+p
for all @ € I and for all B € I’. Therefore, since agby # 0, we must have that
multideg(fg) = multideg(f)+ multideg(g) O

A special case of a weight order is constructed as follows. Fix u € Z%,. Then, for a;, 8
in Z%, define a >y, B if and only if

u-a>u-g, or u-a=u-f and a>,p,

where - denotes the usual dot product of vectors. Verify that >,, , is a monomial order.

Proof. We first show that >, is a total ordering. Let a, 8 € Z%,. Assume that a # 3.
Since Zsq is totally ordered with the usual definition of >, ezactly one of the following
cases must be true:

iu-a>u-p
i) u-a<u-pB
(iii) u-a=u-p.

By definition of >y, if case (i) holds then a >,, B. Similarly, if (ii) holds then
B >uo a. In the case (iii), since >, is given to be a total order, exactly one of the
following cases holds: @ >, 8 and so & >, 8; B >, @ and so B >, a; or a =, B and
SO & =y, .

Therefore, exactly one of & >y, B or B >,, @ or @ =4, B holds. We conclude that
>4, 15 a total ordering.



To demonstrate the second requirement for a monomial ordering, let a;, 8 € Z%, such
that @ >y, 8. Let v € Z%,. If u-a > u- 3, then

u-(a+vy)=u-at+u-y>u-f+u-y=u-(a+7y)

which shows that @ +7 >, 8+ 7. In the case that u-a =u- g, then a >, 8. Note
that

u-(a+y)=u-at+u-y=u-g+u-y=u-(a+7y).

However, since >, is a monomial ordering, we must have a +7 >, 3 + <. Thus again,
a+y>ue B+

Finally, to show that >, , is a well-ordering, we apply the Corollary to Dickson’s Lemma
and verify that a >,,, 0 for all @ € Z%,. Since a € Z%, it is true that u-a > 0 =u-0.
If u-a > 0 then we are done. If the dot product is zero, then we must have a >, 0
since >, is a well-ordering itself and so a >, 0 yet again. 0

(c¢) A particular example of a weight order is the elimination order which was introduced
by Bayer and Stillman. Fix an integer 1 < i <n and let u= (1,...,1,0,...,0), where
there are @ 1's and n — 4 0’s. Then the ith elimination order >; is the weight order
>ugreviez- Prove that >; has the following property: if x* is a monomial in which one
of x1,...,x; appears, then x* >; x# for any monomial x# involving only @1, ..., %n.
Does this property hold for the graded reverse lexicographic order?

Solution: We first prove the desired result and then compare the elimination order with

the graded reverse lexicographic order.

Proof. By the definitions of u,x* and x?, it is clear that u-a > 0 yet u- 3 = 0. Thus,
by definition, x* >; x#. U

This property does not hold for the graded reverse lexicographic order. For example,
let i =1 and S = k[zy, z2] where &1 >grepier T2. Then @3 > jrevier 1.

(2) Let I be a non-zero ideal in klxy,...,x,]. Let G = {g1,..., ¢} and F' = {f1,..., f.} be

two minimal Grobner bases for I with respect to some fixed monomial order. Show that

{LT(g1), - LT(g)} = {LT(fr), ..., LT ()}

Proof. Since both F' and G are minimal Grobner bases for I, we have that the leading
coefficient of each f; and g; must equal 1. Consider f;. Since G is a Grobner basis for 1
and f; € I, there is some g; such that LT(g;) divides LT(f;). Renumber if necessary so
that ¢ = 1. Then, since g; € I and F'is a Grobner basis for I, there must exist some f;
such that LT'(f;) divides LT(g1). We conclude that LT'(f;) divides LT(f;). But, since F' is
given to be minimal, LT'(f;) is not in the ideal generated by the leading terms in F' — {f}.
We conclude that j = 1 and so LT(f;) = LT(g1). We repeat this argument starting with
fo. We again have that there exists some ¢; such that LT(g;) divides LT(f2). Since F' is
a minimal Grobner basis and LT(f,) = LT(g1), we know that [ # 1. We may relabel, if
necessary, to assume that [ = 2. Arguing as above yields LT(fs) = LT(g2). Continuing in
this fashion, we see that this procedure must stop at which point ¢ = r and, after relabeling,

LT(f;) = LT(g;) fori=1,...,t. O



(3)

3

Suppose that I = (g1,...,9;) is a non-zero ideal of k[z1,...,z,] and fix a monomial order
on ZZ%,. Suppose that for all f in I we obtain a zero remainder upon dividing f by G =
{g1,...,9:} using the Division Algorithm. Prove that G is a Grébner basis for I. (We
showed the converse of this statement in class.)

Solution: Below are two possible proofs for this exercise.

Proof. We argue by contradiction and suppose that G is not a Grobner basis for I. Clearly,
(LT(g1),...,LT(g)) € in(I). Thus, we must have in(l) € (LT(g1),...,LT(g)). Let f €I
be a non-zero polynomial such that LT(f) ¢ (LT(g1),...,LT(g:)). Apply the Division
Algorithm to divide f by G. Then, since LT(f) is not divisible by LT(g;) for any 4, the
first step of the algorithm yields that LT(f) is added to the remainder column. This is a
contradiction to the hypothesis that when we divide f by G we obtain a zero remainder.
Therefore, G must be a Grobner basis for 1. O

Proof. We saw in class that GG is a Grobner basis if and only if for all pairs ¢ # j, the
remainder on division of the S-polynomial S(g;, g;) is zero. By definition,

LCM(LM(g,). LM(g;)) ~ LCM(LM(g). LM(g,)

S iy Y5) — 7 .

Since I = (g1, ..., g:), we see that each S-polynomial S(g;, g;) is in 1. Thus, by assumption,
when we divide S(g;, g;) by G we obtain a zero remainder. We conclude that G is a Grébner
basis for 1. 0

Consider the ideal I = (zy + 2z — z2,2? — 2) C k[z,vy, z]. For what follows, use the graded

reverse lexicographic order with x > y > z. You are not permitted to use a computer algebra

system for this exercise. Be sure to show all of your work.

(a) Apply Buchberger’s Algorithm to find a Grobner basis for 1. Is the result a reduced
Grobner basis for 17

Solution: Start by letting g1 = vy — vz + 2,92 = 22 — 2 and G = {g1, g»}. Then

2 2
Y 7y
S(g1,92) = —q1 — 5 92 = —z%z +x2 + Yz.
Ty x

Applying the Division Algorithm to divide S(g1,¢92) by G yields
S(g1,92) = —2go + 12 +yz — 2°.

We let g3 = 22+ yz — 22 (the remainder from dividing S(g1, g2) by G) and append this
to G. Thus, G = {g1, g2, 9g3}. We then calculate

S(g1,93) = —g1— ——9g3 = —yQZ —x2? + yz2 + 22

Applying the Division Algorithm to divide S(g1,¢g3) by G yields
S(g1,93) = —zg3 — Yz + 2yz* — 25 + 22

We let g4 = —y%2 + 2yz? — 23 + 2? (the remainder from dividing S(g1, g3) by G) and
append this to G. Thus, G = {¢g1, g2, 93, 94} We show that G is a Grobner basis for [



by demonstrating that S(g1, g4), S(g2,93), S(92, g4) and S(gs, g4) have zero remainders
when divided by GG. The end results are:

2 2
TY°Z xY°z
S(g1,94) = 2y g1 — _y2294 = xyz2 — x4 yz2
=2°g1 + 293
x2z x%z ) )
S(92,93) = —5 92— ——gs = —ayz +x2" — 2
x Tz
= _Zgl
2,2 2,2
Yz Yz
S(92,94) = poR ey gs = 20°y2? — 272 + 2?2 — LR
= 202%g1 + (2 + 2%) g2 — 22%g3 + 204
2 2
Ty z xY 2
5(93,94) = . gs — —y 294 = y3z + 235?!22 - y222 —x2° + 122

=221 + (22 + 2)g3 — (Y + 2)g4.

Note that G is not a reduced Grobner basis for /. For example, the monomial —zz is
a term of ¢g; and LT (g3) = zz. So, —xz is in the ideal generated by the leading terms

in G—{g}.
(b) Use your answer from part (a) to determine if f = xy®z — 23 + zy is in .

Solution: Dividing f by the Grébner basis G found in part (a) yields
f= e +y® + 22+ g+ (2% + 1)gs + 295 + (—y2' +2° = 3yz® —22° —yz 4+ 2% — 2).

Since the remainder r = —yz* + 2% — 3y2® — 223 — yz + 2% — 2 is non-zero, f is not in
the ideal I.

(5) Consider the affine variety V = V(22 +y?+2%—4, 22 +2y*—5, 22— 1) in C3. Use a computer
algebra system and Grobner bases to find all the points of V.

Solution: Let I = (2* + y? + 2*> —4,2°> + 2y> — 5,22 — 1) C Clz,y, z]. Using CoCoA and
working with lexicographic order with x >, y >, 2z, we find that a Grobner basis for [ is
G = {g17g27g3} where

g=y -1

g = —x —22° + 32

g3 = —22* 4322 1

Thus V = V(g1, g2, g3). Note that g3 depends on z alone. Using the quadratic formula we

see that
0 <— 1 L
== g=—L1l,— —F.
g3 5 5

Setting z = 1, we see that
G=0 <= =1

and
G =0 < y=—-v2,V2

Setting z = —1, we see that

g =0 < z=-1



and
g =0 <= y=-—V2,V2.

Setti L that
etting z = —, we see tha
VG
=0 < =12
and
=0 <~ _\/§_\/§
g1 = y= 27 2
Settin z:_—,we see that
G
=0 < z=—2
and
=0 «— _\/§ —\/g
g1 = y= 27 2
Therefore,



