
Math 918 – The Power of Monomial Ideals

Problem Set 2 Solutions
Due: Thursday, March 25

(1) Fix H := (1, 4, 6, 9, 10, 13, 13, . . .) and let S := k[x1, x2, x3, x4] where k is a field. Does
there exist a homogeneous ideal I ⊂ S such that H(S/I) = H? Provide two reasons for
your answer: one using an O-sequence approach and one using an order ideal of monomials
approach.

Solution: Denote the ith component of H by di for i ≥ 0.
• O-Sequence Approach: In order for H = H(S/I) for some homogeneous ideal I we

need di+1 ≤ d<i>
i for i ≥ 1 and d0 = 1. Consider i = 4. We calculate the 4-binomial

expansion of d4 = 10 to be:
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= 6 + 5 + 1 = 12.

But d5 = 13 > 10<4> = 12 and so H is not an O-sequence. By Macaulay’s Theorem we
conclude that there is no homogeneous ideal I ⊂ S such that H(S/I) = H.

• Order Ideal of Monomials Approach: For what follows we use the degree reverse lexi-
cographic ordering with x1 > x2 > · · · > xn. Let M = ∪t≥0Mt, where Mt is the set of
dt largest monomials of degree t. Setting t = 4 and t = 5 we find
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Note that x1x2x
2
3 is of degree 4 and divides x2

1x2x
2
3 ∈ M5. However, x1x2x

2
3 6∈ M4.

We conclude that M is not an order ideal of monomials. So, by Macaulay’s Theorem,
there does not exist a homogeneous ideal I ⊂ S with H(S/I) = H.

(2) For this exercise we use the same notation that was set up in our discussion of lifting
monomial ideals. Let f = xααα ∈ S = k[x1, . . . , xn]. Prove the following two facts:

(a) f(βββ) = 0 if and only if ααα 6≤ βββ;

Proof. Let ααα = (a1, . . . , an) and βββ = (b1, . . . , bn). Recall that

f =
n∏

j=1

aj−1∏
i=0

(xj − tj,ix0)

and
βββ = [1 : t1,b1 : t2,b2 : · · · : tn,bn ].

Using the fact that the tl,m are chosen to be distinct for a fixed l, we see that

f(βββ) = 0 ⇐⇒ tj,bj
= tj,i for some 1 ≤ j ≤ n and some 0 ≤ i ≤ aj − 1

⇐⇒ bj = i for some 1 ≤ j ≤ n and some 0 ≤ i ≤ aj − 1

⇐⇒ bj < aj for some 1 ≤ j ≤ n

⇐⇒ ααα 6≤ βββ.

�
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(b) f(γγγ) = 0 for all γγγ with deg(γγγ) ≤ deg(ααα) (except for ααα itself).

Proof. Let ααα = (a1, . . . , an) and γγγ = (c1, . . . , cn) where deg(γγγ) = deg(ααα) and γγγ 6= ααα.
It is easy to see that if deg(γγγ) < deg(ααα) then there is some j such that cj < aj. If
deg(ααα) = deg(γγγ) then again there must exist j such that cj < aj; otherwise ci ≥ ai for
all i implying that ααα = γγγ since

∑n
i=1 ci =

∑n
i=1 ai, a contradiction to the assumption

ααα 6= γγγ. We conclude that ααα 6≤ γγγ. Applying part (a) gives f(γγγ) = 0 as desired. �

(3) In this exercise we further explore Hilbert functions of distinct points in projective 2-space.
Let S = k[x1, x2], where k is an algebraically closed field of characteristic zero. Further, let

J ⊂ S be a homogeneous ideal such that
√

J = (x1, x2). We set α(J) to be the least degree
of a non-zero homogeneous polynomial in J .
(a) Set B = S/J . Prove that

H(B, t) =

{
t + 1 for t < α(J)
≤ α(J) for t ≥ α(J).

Proof. First observe that

H(B, t) = dimk(St)− dimk(Jt) = (t + 1)− dimk(Jt).

For t < α(J), we have that Jt = 0 and so H(B, t) = t + 1. For the second part of
the claim, note that there exists a non-zero element F ∈ J such that deg(F ) = α(J).
Hence, dimk(Jα(J)) ≥ 1 and so H(B, α(J)) ≤ (α(J) + 1) − 1 = α(J). Finally, fix
t > α(J). We have that (F ) ⊆ J and so

dimk(St−α(J)) = dimk((F )t) ≤ dimk(Jt).

Therefore,

H(B, t) = dimk(St)− dimk(Jt)

≤ dimk(St)− dimk((F )t)

= dimk(St)− dimk(St−α(J))

= (t + 1)− (t− α(J) + 1)

= α(J).

�

(b) Let V ⊂ St be a non-zero subspace of St. Denote by S1V the subspace of St+1 generated
by {Lv | L ∈ S1 and v ∈ V }. Prove that

dimk(S1V ) ≥ (dimk V ) + 1.

Proof. Let F1, . . . , Fl be a basis for V . It is clear that {x1F1, . . . , xlFl, x2F1, . . . , x2Fl}
spans S1V and {x1F1, . . . , x1Fl} is a linearly independent set. We will be done if we
can show that x2Fj is not in the span of {x1F1, . . . , x1Fl} for some j.

For 1 ≤ i ≤ l write Fi = xq
1F

′
i , where q is chosen so that x1 does not divide some F ′

j

(q = 0 is possible). We claim that x2Fj is not in the span of {x1F1, . . . , x1Fl}. To see
this, assume to the contrary that we can find constants c1, . . . , cl ∈ k such that

l∑
i=1

cix1Fi = x2Fj.
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Then

xq+1
1

l∑
i=1

ciF
′
i = x2x

q
1F

′
j

which implies that x1 divides F ′
j , a contradiction. �

(c) Let X = {P1, . . . , Pt} be a set of distinct points in P2. We set α = α(X) to be the least
degree of a non-zero homogeneous polynomial in I(X). Show that ∆H(X) has the form

∆H(X) = {1, 2, 3, . . . , α− 1, α, ∆H(X, α), ∆H(X, α + 1), . . .}
where α ≥ ∆H(X, α) ≥ ∆H(X, α + 1) ≥ ∆H(X, α + 2) ≥ · · · .

Proof. Let R = k[x0, x1, x2] and I = I(X). Since X is a finite set of distinct points
there is a linear form which misses X entirely. After a linear change of variables, we
may assume this linear form is x0. Then x0 is a non-zero-divisor in A = R/I. Note
that R/(I, x0) ∼= S/J where J the homogeneous ideal obtained by setting x0 = 0 in the

generators of I. In addition,
√

J = (x1, x2) and H(S/J) = ∆H(X). Part (a) can be
applied to see that ∆H(X, t) = t + 1 for t < α and ∆H(X, t) ≤ α for t ≥ α.

To see that ∆H(X, α + t) ≥ ∆H(X, α + t + 1) for all t ≥ 0, note that S1Jα+t ⊆ Jα+t+1.
Thus, by part (b), dimk(Jα+t+1) ≥ dimk(S1Jα+t) ≥ dimk(Jα+t) + 1. Therefore,

dimk(Jα+t+1) ≥ dimk(Jα+t) + 1

=⇒ α + t + 1− dimk(Jα+t) ≥ α + t + 2− dimk(Jα+t+1)

=⇒ dimk(Sα+t)− dimk(Jα+t) ≥ dimk(Sα+t+1)− dimk(Jα+t+1)

=⇒ H(S/J, α + t) ≥ H(S/J, α + t + 1)

=⇒ ∆H(X, α + t) ≥ ∆H(X, α + t + 1).

�

(4) Find all possible Hilbert functions for 9 distinct points in P2. Pick one of the Hilbert
functions H and find a set X ⊂ P2 of 9 distinct points in P2 such that H(X) = H. How do
you know that the constructed set of points has the selected Hilbert function?

Solution: There are 8 possible Hilbert functions for 9 distinct points in P2. The possible
sequences are listed in the following table:

H(X) ∆H(X)
A (1, 2, 3, 4, 5, 6, 7, 8, 9, 9, . . .) (1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, . . .)
B (1, 3, 4, 5, 6, 7, 8, 9, 9, . . .) (1, 2, 1, 1, 1, 1, 1, 1, 0, 0, . . .)
C (1, 3, 5, 6, 7, 8, 9, 9, . . .) (1, 2, 2, 1, 1, 1, 1, 0, 0, . . .)
D (1, 3, 5, 7, 8, 9, 9, . . .) (1, 2, 2, 2, 1, 1, 0, 0, . . .)
E (1, 3, 5, 7, 9, 9, . . .) (1, 2, 2, 2, 2, 0, 0, . . .)
F (1, 3, 6, 7, 8, 9, 9, . . .) (1, 2, 3, 1, 1, 1, 0, 0, . . .)
G (1, 3, 6, 8, 9, 9, . . .) (1, 2, 3, 2, 1, 0, 0, . . .)
H (1, 3, 6, 9, 9, . . .) (1, 2, 3, 3, 0, 0, . . .)

To argue that these are all the possible Hilbert functions, the following facts will be useful:
• H(X) is a differentiable O-sequence with H(X, 1) ≤ 3
• H(X, d) ≤ 9 for all d ≥ 0
• H(X, d) = 9 for d ≥ 8
•

∑8
t=0 ∆H(X, t) = 9 (this follows immediately from the above facts)
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We know that 1 ≤ H(X, 1) ≤ 3 and so 1 ≤ ∆H(X, 1) ≤ 2. We consider these 2 cases.
The details of each case is argued by carefully considering the above facts.
(1) Suppose ∆H(X, 1) = 1. Since ∆H(X) is an O-sequence, ∆H(X, t) ≤ 1 for t ≥ 2. The

only possible sequence for H(X) is the sequence in Case A.
(2) Suppose ∆H(X, 1) = 2. Then, since ∆H(X) is an O-sequence, 1 ≤ ∆H(X, 2) ≤ 3. This

leads to 3 possible situations.
(i) If ∆H(X, 2) = 1 then ∆H(X, t) ≤ 1 for t ≥ 2. This gives Case B.
(ii) If ∆H(X, 2) = 2 then 1 ≤ ∆H(X, 3) ≤ 2. If ∆H(X, 3) = 1 then we must be in

Case C. If ∆H(X, 3) = 2 then 1 ≤ ∆H(X, 4) ≤ 2: if ∆H(X, 4) = 1 then we must
be in Case D; if ∆H(X, 4) = 2 then we are in Case E.

(iii) If ∆H(X, 2) = 3 then 1 ≤ ∆H(X, 3) ≤ 4. If ∆H(X, 3) = 1 then we must be
in Case F. If ∆H(X, 3) = 2 then ∆H(X, 4) = 1 giving Case G. If ∆H(X, 3) =
3 then ∆H(X, 4) = 0 giving Case H. We can never have ∆H(X, 3) = 4 since∑8

t=0 ∆H(X, t) = 9.

We now concentrate on H = (1, 3, 5, 7, 8, 9, 9, . . .). Using the method of lifting monomial
ideals with tj,i = i gives H(X) = H where

X = {[1 : 0 : 0], [1 : 1 : 0], [1 : 0 : 1], [1 : 2 : 0], [1 : 1 : 1], [1 : 3 : 0], [1 : 2 : 1], [1 : 4 : 0], [1 : 5 : 0]}.

(5) Suppose that I is a homogeneous ideal in the ring R = k[x0, . . . , xn] where k is an alge-
braically closed field of characteristic 0. Suppose that Id 6= 0 and that H(R/I) has maximal
growth in degree d. Prove that Id and Id+1 have a greatest common divisor of positive degree
in the following two cases:
(a) n = 1 and H(R/I, d) ≥ 1;

Proof. From our discussion on maximal growth of Hilbert functions it suffices to demon-
strate that PGCD(Id) is positive. We have

PGCD(Id) = max{j | f1,j(d) ≤ H(R/I, d)},
where by definition

f1,j =

(
d + 1

1

)
−

(
d− j + 1

1

)
= (d + 1)− (d− j + 1) = j.

Setting j = 1, we see that 1 = f1,1 ≤ H(R/I, d). Hence PGCD(Id) > 0 and we are
done. �

(b) n = 2 and H(R/I, d) ≥ d + 1.

Proof. As in part (a), it suffices to demonstrate that PGCD(Id) is positive. We have

PGCD(Id) = max{j | f2,j(d) ≤ H(R/I, d)},
where

f2,j =

(
d + 2

2

)
−

(
d− j + 2

2

)
.

Setting j = 1, we see that

f2,1 =

(
d + 2

2

)
−

(
d + 1

2

)
= d + 1 ≤ H(R/I, d).

We conclude that PGCD(Id) > 0 which completes the proof. �


