Math 918 — The Power of Monomial Ideals

Problem Set 3 Solutions
Due: Thursday, April 15

This problem set involves choices! Submit solutions to 2 exercises from Part I and 1 exercise from Part II.

Part I - Exercises Related to Hilbert Functions & Regular Sequences

(1) For parts (b) - (d) of this exercise use reverse-lexicographic order with z; >, epier™> T2 >revier * - -

(a)

Find a (3,4,5)-lex-plus-powers ideal L C S = k[z1,x2,x3] such that H(S/L,3) = 9 and
H(S/L,6)=5.

Solution: Let L = (x3, x4, 23, 2323, 23 xox3, 232%). A straightforward check using the defini-

tion verifies that L is a (3,4, 5)-lex-plus-powers ideal. One can also check, either by hand

or using a computer algebra program, that H(S/L) = (1,3,6,9,8,7,5,3,1,0,0,...). An-

other possible (3,4, 5)-lex-plus-powers ideal that would satisfy the given conditions is L' :=

(xi’,x%,xg,xfxg,x%xgxg,x%xgxg,x%x%xg) We have H(S/L") = (1,3,6,9,11,11,5,3,1,0,0,...).

Fix m to be a monomial of degree d in S = k[z1, 72, v3, 24]/ (25, 25, 23, 23). Recall that L(m)

denotes the set of all degree d monomials in S which are greater than or equal to m. Decompose
|L(z3x323)| in terms of integers of the form (“*;"%). Give an algebraic description of each
term in the decomposition.

Solution: The desired decomposition is

4,3,3 4,3,3 4,3
]L(as:{’xgxi)]=<’8’ )—l—< ’7’ )+(é):6+10+2=18.

The integers in this decomposition are counting monomials in S of degree 8 as follows:
Any degree 8 monomial in S not divisible by x4 will be greater than z3x323. There are

4,3,3
6: =
()

such monomials; namely, those of the form z{*25?25* where 0 < a; <4,0 < a3 <3,0<a3 <3
and ay + a2 + ag = 8.

Any degree 8 monomial in S involving xj but no higher power of z4 will be greater than

3.3
4,3,3
10 = ’ 9y

2
xjxyxy. There are
aj a2 _.as

such monomials; namely, those of the form x7'25%25* where 0 <a; <4,0< a3 <3,0<a3 <3
and a1 +as +az ="7.

The monomials of degree 8 in S involving 22 but no higher power of x4 and which are greater

than z$x322 are r{z2z? and r3x322. This set of monomials has cardinality

4,3
2— < ’ )
6
Assume I C S = k[r1,72,73,24] is a homogeneous ideal containing {z},z3, x5, z3}. If

H(S/I,8) =17, then what is the largest value possible for H(S/I,9)?

Solution: To answer this question we need to use the following “Pascal’s Table” associated to
the given powers of the variables:

Degree 01 2 3 4 5 6 7 8 9 10 11 12 13

H(klz1]/(z7)):/1 1 1 1 1 0 0 0 0 0 0 0 0 O
H(k[ml,m]/(wl,xg)): 123 4 4 3 2 1 0 0 0 0 0 0
H(k[z1, x2, 23]/ (23, 25,25)): |1 3 6 10 13 14 13 10 6 3 1 0 0 0
H(k[z1, w2, x5, 24)/ (25, 25,23, 23)): |1 4 10 19 29 37 40 37 29 19 10 4 1 0



Starting in degree 8, we decompose 17 using integers of the form ( t € ) Doing so we obtain
the decomposition (the corresponding numbers in the table are in bold):

4,3,3 4,3,3 4 4 4\
H(S/I,S)_17—< . >+< - >+<6>+<5)+(4>—6+10+0+0+1.

We saw in class that

H(S/I,9) < <4’;”3> + <4’Z’3> + <§) + <g) + (g) =3+6+0+0+0=9

(the corresponding numbers in the table are underlined).

(d) Assume that the EGH Conjecture is true. Can there be a homogeneous (3,4, 4,5)-ideal I C
S = klx1,xe, w3, x4] with H(S/I) = (1,4,10,18,24,29,...)7

Solution: We again use the “Pascal’s Table”:

Degree: [0 1 2 3 4 5 6 7 8 9 10 11 12 13

H(kpﬂ/(ﬁ)) 111 1 1 0 0 0 0O 0 0 0 0 O
H(klxy,22]/(23,23)): |1 2 3 4 4 3 2 1 0 0 0 0 0 0
H(k[x1, 79, 23]/ (23, 25,23)): |1 3 6 10 13 14 13 10 6 3 1 0 0 0
H(k[x1, 79, 23, 24)/ (23, 25, 23, 23)): |1 4 10 19 29 37 40 37 29 19 10 4 1 0

Let H = (1,4,10,18,24,29,...) = {ht}+>0. Note that we can decompose hgs = 24 as:

4,3,3 4,3,3 4
VI ke e —134+10+1
m=2= (M) (M30) 4 (5) 1 a0+

(the corresponding integers are in bold in the table). Assuming the EGH Conjecture is
true, if there were a homogeneous (3,4,4,5)-ideal I C S = k[z1,z2,x3,24] with H(S/I) =
(1,4,10,18,24,29,...) = H then

4,3,3 4,3,3 4
:2< » = » =
=22 (57) < (757 + 3

(these corresponding integers are in underlines in the table). Since

4,3,3 4,3,3 4
h5:29>28:14—|—13—|—1:(’5’ )+< " >+<3>,

we conclude that there can be no such ideal I.

(2) EGH Points Conjecture in P?: Fix integers 2 < dy < do. Let AH = {h;}+>0 be the first difference

Hilbert function of some finite set of distinct points in P2 such that hy < H(k[xy, 2]/ (z9, 232),1)
for all t > 0. Prove that there exist finite sets of distinct points X C Y C P? where Y is a complete

intersection of type {di,d2} and AH(X) = AH if and only if hy11 < hgt) for all t > 1.

Proof. No-one submitted a solution for this exercise. However, a few people have indicated that
they are still thinking about a proof. Thus, rather than giving an entire proof I will provide only
hints.

Suppose that hy41 < hgt) for all t > 1. To construct the sets X and Y, define
Y:={[1l:a1:0a2]|a; eN,0<a; <ds—1,0<ay<d;—1}.

By carefully applying the work of Clements and Lindstrém, one can lift a certain monomial ideal

in k[z1,x2] to obtain the desired subset X C Y. (Remember: the bounds h;y; < hgt) forallt >1
really do come from the work of Clements and Lindstrém.)

Now suppose that we have sets X C Y C P? where Y is a complete intersection of type {d1,ds}
and AH(X) = AH. To show that h;y; < hgt) for all ¢ > 1, combine the following observations:



(3)

If t < dy— 2 and hy < H(k[zy, 2o)/(z" ,xQ 2),1), then h{" = h,.

If t > dy — 1 and hy < H(k[z1,22)/ (2%, 282), 1), then h( )=y — 1.

AH must be an O-sequence.

One cannot have hy = hyyq for any ¢t € {dy — 1,...,d; + da — 3}. (You can show this last fact
by using contradiction and applying the Cayley-Bacharach Theorem.)

O

Classical Cayley-Bacharach Theorem: Let X = {Py,..., Py} be the complete intersection of two
cubics in P2. Use the Cayley-Bacharach Theorem to show that any cubic passing through 8 of the
9 points of X must also pass through the remaining 9th point.

Proof. Without loss of generality, we can assume that there is a cubic passing through Y :=
{P1,...,Ps}. We want to show that this cubic also passes through {Py}. Since X is a complete
intersection of two cubics, we know that

AH(X)=(1,2,3,2,1,0,0,...).
Also, by properties of Hilbert functions of finite sets of distinct points, we know that
AH({Py}) = (1,0,0,...).
The Cayley-Bacharach Theorem gives the relationship
AH(X,t) = AH{Po},t) + AH(Y,(3+3) —2—1t).
Using this equation to solve for AH(Y), we find
AH(Y)=(1,2,3,2,0,0,...).

Thus, we now have

H(X)=H{P,...,Ps, Py})=(1,3,6,8,9,9,...)

H(Y)=H{P,...,P})=(1,3,6,8,8,...).

That is, dimy(I(Y)3) = dimy(I(X)3) = (2+3) 8 = 10 — 8 = 2. But, since Y C X, we know that
I(X)3 C I(Y)3. Thus, I(X)3 = I(Y)3. That is, any cubic passing through Y must pass through all
of X and hence {Py}. O

Part II - Exercises From Group Presentations

From Croll-Gibbons-Johnson: Our exercise outlines a proof of the following lemma due to Buchs-
baum and Eisenbud:

Lemma. Let R be a ring, v € R, and S = R/(z). Let B be an S-module, and let

f: FQ&FEAFO

be an exact sequence of S-modules with coker(¢1) = B. Suppose that

G- GQ&G1LG0

18 a complex of R-modules such that
(i) x is a non-zero divisor on each Gj,
(’LZ) G, ®r S =2 F;, and
(iii) ;i @r S = ¢;.
Then A = coker(1)1) is a lifting of B to R.
(a) With the conditions of the lemma and i € {0, 1,2}, prove that the sequence

q

0 G; = G;

is exact, where -z is the map given by multiplication by x and ¢ is the canonical quotient map.

Gi/xGiHO



Proof. The map -z is injective since x is a non-zero divisor on G; (condition (i)). By construc-
tion, ker(q) = G; = im(-z). Finally, the quotient is surjective. O

(b) In the diagram below, show that each square of the diagram commutes.

0 0 0
0 Gy - - Gy 0
X T X
0 Gy P2 G Y1 Go 0
0 n-"er "R 0
0 0 0
Conclude that
0 G—2~¢g F 0

is an exact sequence of complexes (briefly explain why each column is exact).

Proof. Since x € R and the 1; are module homomorphisms, -x o ¥;(g) = z1;(g9) = ¥i(xg) =
1; 0-x(g), so the top squares commute. Note that F; =2 G; ® S = G;/xG; (which gives that the
columns are exact), and we may rewrite the square as

i

G; Gi1
idGi ®15\L \Lidgil ®1g

G; ®Rr S MsGi_l ®RS.

But then
(idGi—l ®1S) © wz(g) = wl(g) ®1ls = (wl ® idS) © (idGz‘ ®15) (9)7

and the square commutes. ]

(c) Given any exact sequence of complexes () D 2D C 0, there is a corre-
sponding long exact sequence in homology given by

Hy (D) —— Hy(C)

Hy(D) —=> Hy(D.) ——= Hy(C)

Ho(D) —%> Hy(D.) — Hy(C)) — 0.

Use the long exact sequence in homology with the exact sequence of complexes to determine
that A/zA = B and z is a non-zero divisor on A. Conclude that A is a lifting of B to R.
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Proof. Computing homologies, we determine that Ho(F) = coker(¢1) = B, Hy(G) = coker(¢1) =
A, and Hy(F) = 0 since F is exact at F;. Thus the long exact sequence in homology yields, in
an exciting role reversal, a short exact sequence

T

0 A A B 0,

confirming that -z is injective (so x is a non-zero divisor on A) and B = A/im(-x) = A/zA.
That’s what we needed to satisfy to show that A is a lifting of B to R. O

(2) From Brase-Denkert-Janssen: Accept that any monomial ordering > on k[z1,...,z,] can be ob-
tained by taking pairwise orthogonal vectors vy, ..., vy € k™ where v has only non-negative entries
and where x* > x8 if and only if there exists ¢ < r such that v; -a = v;- 8 for all i < ¢t — 1 and
Vi - > Vi - IB

(a) Let = n and v; = e; for all i where e; is the ith standard basis vector for £™. Show that >
is the lexicographic order.

Proof. Let a = (a1,...,a,) and B = (b1,...,b,). By definition, x* >., x? if and only if the
leftmost non-zero entry of a— 3 is positive. Say this entry is in the ¢ position. Then x® >, x8
if and only if
vica=a;=b;=v;-B forall1<i<t-—1
and
vt~a:at>bt:vt‘ﬂ.
Therefore, X* >0, x? if and only if x* > xB. O

(b) Let r = n and define vectors as follows:
vi=(1,...,1)
vi=(1,1,...,1,i—(n+1),0,0,...,0)

where the entry i — (n + 1) is in the (n + 2 — 9)th position for i € {2,...,n}. Show that > is
the graded reverse-lexicographic order.

Proof. Let r = n and define vectors vi and v;j as above. We will show that > is >greviex. To do
this, we will show that % > ZP iff there exists t < n such that v - @ = v; -Bfori <t—1and
Vi Q> Vi - ﬂ

Let @ = (ai,...,an) and B = (b1,...,b,) we have vi - a = |a| = Y ' | a; and likewise for 3.
Additionally, vo - a = Z?;ll a; — nay and likewise for 8. Inductively, we can see that

vica=vi_1-a+(n+2-— i)(an,(i,g) — an,(i,Q)) forv>3

and likewise for 3.

Suppose T >greviex zP for a # B. By definition, this happens IFF vy -a > vi-Bor vi-a =vy-0
and there exists s for which 0 < s < n such that a,,—; = b,,—; for all i < s and a,—s < b,,—s. We
will show that this is true IFF 2% > 28. To do so, we consider two cases.

Case 1: Assume |a| > |B|. This holds IFF v; -a > vy - 8 which implies % > 2# and concludes
Case 1.

Case 2: Assume vy -a = vy - 3 and there exists s < n such that a,_; = b,_; for all ¢ < s and
p—s < bp_s. Now s =0 IFF vo -a > va - 3, as this holds IFF —na, > —nb, IFF a, < b,.

So, assume s > 0. Since a # f but |a| = > ;a; = > b = |B], @ and B must differ in at
least two entries, so a,_; = b,_; for i < s means that s < n — 2. Thus, we are considering s for
which 1 <s<n-—2.

Notice that 1 < s < n — 2 implies that vi - = v1 - and vg-a = vy - 8. Using (1), we see that
vz -a=vy-a+ (n—1)(a, —ap—1) (and likewise for B8), so vz -a —vsg-B=(n—1)(bp—1 — an—1),
sovg-a>vy-BIFFa, 1 <b, 1and vg-a=vs -BIFF a, 1 =b,_1.



Define t = s 4+ 2. Continuing like this, we see for all t > ¢ > 3 that
vica—vi-B=(n+2—i)(b,—i—2) — Ap_(i-2))-
Thus, for all such 7, vi - @ =v;-8. Now, if i = s+ 2 =1,
vira—vy-f=(n+2—(s+ 2))<bn7(s+272) - an7(5+272)) = (n—8)(bp—s — an—s) > 0.
In other words, ap—s < bp—s IFF vi -a > v¢ - 8. Thus, a,_s < b,_s implies % > zB.
Now, if 2* > 8, either the converse of the last conclusion of Case 1 is true (i.e., z® > zf implies
vy -a > vy - f3), or that of Case 2 is true (i.e., % > z8 implies la| = |B| and ay,—s < by,—s for some

s > 0), and, in either case, we may retrace the string of “if and only if”s from there to conclude
that % >greviex z8. O



