
Math 918 – The Power of Monomial Ideals

Problem Set 4 Solutions

Due: Thursday, April 22

This problem set involves choices! Submit solutions to 2 exercises from Part I and 1 exercise from Part II.

Part I - Exercises Related to Borel-Fixed and Generic Initial Ideals

The following exercises are taken from the Chapter 2 Exercises of “Combinatorial Commutative Algebra”
by E. Miller and B. Sturmfels.

(1) [Exercise 2.2] Can you find a general formula for the number B(r, d) of Borel-fixed ideals generated
by r monomials of degree d in three unknowns {x1, x2, x3}?

Solution: There were a variety of approaches to this exercise. I highlight two below.

• Approach 1: The first approach is a recurrence relation:

B(r, d) =


0 if r < 0
1 if 0 ≤ r ≤ 2
B(r, d− 1) + B(r − d− 1, d− 1) if r ≥ 3.

The following explanation is based on the submission from Derrick Stolee.

The cases of r ≤ 0 are obvious. If r = 1 then the only Borel-fixed ideal in k[x1, x2, x3]
generated by 1 monomial of degree d is I = (xd

1). Similarly, if r = 2, the only Borel-fixed ideal
in k[x1, x2, x3] generated by 2 monomials of degree d is I = (xd

1, x
d−1
1 x2).

For the recurrence relation, we consider all Borel-fixed ideals in k[x1, x2, x3] which are generated
by r monomials of degree d. These ideals can be partitioned into two types:

– Type 1: those ideals containing xd
2;

– Type 2: those ideals not containing xd
2.

By Proposition 2.3 in Miller and Sturmfels’ book, any Borel-fixed ideal I of Type 1 must also
contain the monomials of the form xj

1x
d−j
2 . There are d + 1 such monomials which leaves

r−d−1 monomial generators for I, say m1, . . . ,mr−d−1. Note that mj must involve a positive
power of x3 for 1 ≤ j ≤ r − d− 1. Define the ideal J to be the ideal generated by the degree
d− 1 monomials m1

x3
, . . . ,

mr−d−1

x3
. Using Proposition 2.3, it is straightforward to check that J

is a Borel-fixed ideal generated by r − d − 1 monomials of degree d − 1. Since there is a 1-1
correspondence between ideals of the form I and J , this allows us to conclude that the number
of Type 1 ideals is equal to B(r − d− 1, d− 1).

We now focus on Type 2 ideals. Again by Proposition 2.3, a Borel-fixed ideal I = (m1, . . . ,mr)
of Type 2 cannot contain any monomial of the form xj

2x
d−j
3 (otherwise xd

2 would be forced into
the ideal I). So, any monomial generator of I must involve a positive power of x1. Define the
ideal J to be the ideal generated by the degree d−1 monomials m1

x1
, . . . , mr

x1
. It is straightforward

to see that J is a Borel-fixed ideal generated by r monomials of degree d − 1. Since there is
a 1-1 correspondence between ideals of the form I and J , this allows us to conclude that the
number of Type 2 ideals is equal to B(r, d− 1).

By summing the cardinalities of the ideals of Type 1 and 2, we see that

B(r, d) = B(r, d− 1) + B(r − d− 1, d− 1).

• Approach 2: The second approach involves partitions. The following is Justin DeVries’ solution.
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The basic idea behind the following solution is to arrange the monomials of degree d into a
Young tableau:

Along the top row, the d + 1 monomials with exponent equal to 0 on x3 are arranged in the
order:

xd
1x

0
2x

0
3, x

d−1
1 x1

2x
0
3, x

d−2
1 x2

2x
0
3, . . . , x

0
1x

d
2x

0
3.

Along the second row, the d monomials with exponent equal to 1 on x3 are arranged in the
order:

xd−1
1 x0

2x
1
3, x

d−2
1 x1

2x
1
3, x

d−3
1 x2

2x
1
3, . . . , x

0
1x

d−1
2 x1

3.

The remaining rows are labeled similarly, with row i (starting the index at i = 0) getting the
d + 1− i monomials with i as the exponent on x3 and in decreasing order of the exponents on
x1.

With this labeling, the action of the Borel subgroup defines a “flow” on the tableau:

– any monomial can be transformed to a monomial on the same row that is one step to
the left on the tableau,

– any monomial can be transformed to a monomial on the row above that is one step to
the right.

Of course, the Borel group provides other transformations, e.g. transforming a monomial to
the one directly above it in the tableau, but the virtue of these two transformations is that
an ideal generated by degree d monomials is Borel-fixed if and only if the monomials in I
arranged in the tableau are closed under these transformations.

The sub-tableau that are closed under the above flow are those that have decreasing rows
extending all the way to the left and that have distinct row lengths. When the ideal has exactly
r generators, there must be exactly r boxes altogether in the tableau. Combinatorialists will
recognize this description as a partition of r into distinct parts, and this viewpoint is much
easier to prove statements with, so we’ll adopt it for the remainder of the solution.

Recall that a partition of r is a sum r =
∑

ni with ni ∈ N>0. The numbers ni are called the
parts of the partition.

We’ll show that B(r, d) also counts the number of partitions of the integer r with distinct parts
that are at most d+1. Taking d ≥ r, a general formula for B(r, d) would give a general formula
for counting the number of partitions of r with distinct parts, and since there is no known
formula for this latter number we will be satisfied with this description1.

Let I be a Borel-fixed ideal with generators xa1
1 xb1

2 xc1
3 , . . . , xar

1 xbr
2 xcr

3 with ai + bi + ci = d for
all i. Define a partition of r by setting

ni = max{bj + 1 | 1 ≤ j ≤ r and cj = i},
and ni = 0 if cj 6= i for all j. First, we claim that nj 6= 0 implies ni > nj for i < j. If nj 6= 0
then there is a generator xa`

1 x
nj−1
2 xj

3 ∈ I. Because I is Borel-fixed, we also have a generator
xa`

1 x
nj−1+(j−i)
2 xi

3 ∈ I. So ni ≥ nj +(j− i) > nj . From this we know there is an integer N such
that ni 6= 0 for i ≤ N and ni = 0 for i > N . We claim that

(a) ni ≤ d + 1 for 0 ≤ i ≤ N ,
(b) ni > nj for 0 ≤ i < j ≤ N ,
(c) r =

∑N
i=0 ni.

1a description of the generating function for B(r, d) would be nice however
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The first claim follows simply from the fact that bj ≤ d for all j as the generators of I have
degree d. The second claim follows from the above argument since nN 6= 0. For the third
claim, when ni 6= 0 we have a generator xa`

1 xni−1
2 xi

3 ∈ I. Because I is Borel-fixed, the ni

monomials xa`+1
1 xni−2

2 xi
3, . . . , x

a`+ni
1 x0

2x
i
3 are also generators of I. Define

S(i) = {xa`
1 xni−1

2 xi
3, x

a`+1
1 xni−2

2 xi
3, . . . , x

a`+ni−1
1 x0

2x
i
3}.

Note that S(i) is contained in the generating set of I for all i.

For i 6= j, the sets S(i) and S(j) are disjoint because the exponents on x3 are distinct.
Moreover, every generator of I is in some S(i). Indeed, take a generator x

aj

1 x
bj

2 x
cj

3 . Then
bj ≤ ncj − 1 by the definition of ncj . So this generator is in S(cj).

Thus the disjoint sum
⋃

0≤i≤N S(i) gives the generating set of I. Phrased in terms of cardi-
nalities, r =

∑N
i=0 ni. This establishes the third claim.

So given a Borel-fixed ideal I generated by r monomials of degree d, we can produce a partition
of r with distinct parts that are at most d + 1. Now suppose we have such a partition:
r =

∑N
i=0 ni with ni > nj for i < j. Define the sets S(i) as before:

S(i) = {xd−(ni−1)−i
1 xni−1

2 xi
3, x

d−(ni−1)−i+1
1 xni−2

2 xi
3, . . . , x

d−(ni−1)−i+ni−1
1 x0

2x
i
3}.

We claim that the ideal I generated by
⋃

0≤i≤N S(i) is a Borel-fixed ideal of the desired
form. First note that every generator has degree d and that there are exactly r of them since
r =

∑N
i=0 ni and S(i) ∩ S(j) = ∅ for i 6= j. So it suffices to show that I is Borel-fixed. As I is

monomial, it suffices to show that if m is a generator of I and xj divides m then m xi
xj
∈ I for

i < j.

Take a generator m = xa
1x

b
2x

c
3 of I. We have m ∈ S(c), so the definition of S(c) shows that

mx1
x2
∈ I if x2 divides m. Suppose that x3 divides m so that c ≥ 1. We have b ≤ nc − 1 and

nc ≤ nc−1 − 1 by definition of I and the partition, so b + 1 ≤ nc−1 − 1. Thus

m
x2

x3
= xa

1x
b+1
2 xc−1

3

is in S(c− 1), and therefore is in I. Finally, note that mx1
x3

= mx1
x2

x2
x3

, and the right-hand side
is in I by what we have shown. So I is a Borel-fixed ideal.

Examining the two constructions used we see that they are inverses: given a Borel-fixed ideal
we stratify the generators into sets S(i) which give a partition by their cardinalities, and given
a partition we form the same sets S(i) to determine the generators of a Borel-fixed ideal. So
we have a bijective correspondence between Borel-fixed ideals generated by r monomials of
degree d and partitions of r that have distinct parts that are at most d + 1.

(2) [Exercise 2.4] Is the class of Borel-fixed ideals closed under the ideal-theoretic operations of taking
intersections, sums, and products? Either prove your claims or give counter-examples.

Solution: Yes, the class of Borel-fixed ideals is closed under all three operations of taking intersec-
tions, sums, and products.

Intersections: Let {Jα}α∈Γ be a collection of Borel-fixed ideals in S = k[x1, . . . , xn]. It is clear that
J := ∩α∈ΓJα will be a monomial ideal. Let m be any monomial in J such that xj divides m. Then
for all α ∈ Γ, since m ∈ Jα and Jα is Borel-fixed, we must have

m
xi

xj
∈ Jα

for all i < j. We conclude that

m
xi

xj
∈ J

for all i < j. Thus, the intersection ∩α∈ΓJα is Borel-fixed.
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Sums: For ease of notation, we work below with two ideals. The proof for the sum of more than
two ideals uses the same ideas. Suppose J1 = (f1, . . . , fr) and J2 = (g1, . . . , gl) are Borel-fixed
ideals in S = k[x1, . . . , xn]. We have that J1 + J2 = (f1, . . . , fr, g1, . . . , gl). Since J1 and J2 are
both Borel-fixed, if xj divides fb then

fb
xi

xj
∈ J1 ⊂ J1 + J2

and if xj divides gc then

gc
xi

xj
∈ J2 ⊂ J1 + J2

for all i < j. Since it is enough to check the Borel-condition on (minimal) generators this shows
that the ideal J1 + J2 must be Borel-fixed.

Products: Again, for ease of notation, we work below with two ideals. The general proof for the
product of finitely many ideals uses the same ideas. Suppose J1 = (f1, . . . , fr) and J2 = (g1, . . . , gl)
are Borel-fixed ideals in S = k[x1, . . . , xn]. We have that J1J2 = (fagb : 1 ≤ a ≤ r, 1 ≤ b ≤ l).
Assume xj divides fagb. Then xj divides fa or gb. If xj divides fa then

fa
xi

xj
∈ J1

and so
fagb

xi

xj
∈ J1J2

for all i < j. Similarly, if xj divides gb then

gb
xi

xj
∈ J2

and so
fagb

xi

xj
∈ J1J2

for all i < j. Since it is enough to check the Borel-condition on (minimal) generators this shows
that J1J2 must be Borel-fixed.

(3) [Modified Exercise 2.11] Let I = (x1x2, x2x3, x1x3) ⊆ S = k[x1, x2, x3]. Compute the generic initial
ideal gin<(I) for the lexicographic and reverse lexicographic monomial orders. Also, compute
the lex-segment ideal L ⊆ S with H(S/I) = H(S/L). (Note: Although you can use a computer
algebra program to support your solution, you should avoid finding the generic initial ideals by
using pre-defined functions.)

Solution: Only 1 student submitted a solution for this exercise. So that others can continue to
work on the exercise, I only provide here the final outcomes. The computer algebra system CoCoA
gives gingrevlex(I) = (x2

1, x1x2, x
2
2) and ginlex(I) = (x2

1, x1x2, x1x3, x
3
2). Also, the lex-segment ideal

L is L = (x1x2, x1x3, x
2
1, x

3
2).

Part II - Exercises From Group Presentations

(1) From Boekner-Stolee: Recall the definition of a perfect graph is a graph for which every induced
subgraph, we have the chromatic number equal to the clique number.

It is well known that the Petersen graph, described as follows and shown below, is not perfect.

The Petersen graph is the graph on 10 vertices, given by subsets of size 2 from a set of 5 elements.
The edges are formed if the two vertices (as subsets) are disjoint.
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

  

 

 



(a) Show that the chromatic number of the Petersen graph is 3, but the clique number is 2.

Solution: The outer (or inner) 5-cycle subgraph needs three colors (which was demonstrated
in class). Since this subgraph requires at least three colors, so does the entire graph. It is
straightforward to see that the 3-coloring on the subgraph forces a 3-coloring of the Petersen
graph.

There are no cliques of size 3 since there are no 3 subsets of size two from a set of 5 elements
which are mutually disjoint (this would require 6 elements).

(b) Find an odd hole.

Solution: There are many odd holes, in fact any 5 cycle you find is an odd hole since the graph
is triangle free.

(c) Let J := I(G)∨, where G is the Petersen graph. Give an associated prime of height > 3 in
Ass(J2).

Solution: Use the variables corresponding to the vertices from your odd hole in part (b) to
generate an ideal. Let x1, x2, x3, x4, x5 be the variables for the vertices in the odd hole (so
that (x2

1, x
2
2, x

2
3, x

2
4, x

2
5) is part of a primary decomposition of J). By a theorem from the

presentation

{xi1 , . . . , xis | xi1 , . . . , xis induces an odd cycle} ⊆ Ass(J2).

Thus, (x1, x2, x3, x4, x5) ∈ Ass(J2). Since we have the series of inclusions

(x1) ( (x1, x2) ( (x1, x2, x3) ( (x1, x2, x3, x4) ( (x1, x2, x3, x4, x5)

we know that (x1, x2, x3, x4, x5) has height > 3 (in fact, the height is 5).

(2) From DeVries-Yu: Let Kn,d be the complete bipartite graph on n and d vertices (i.e. let L be a set
of n vertices and R a set of d vertices with L ∩ R = ∅. Then the vertex set of Kn,d is L ∪ R, and
the edge set of Kn,d is the set of all pairs with one element from L and one element from R). Let
I(Kn,d) denote the edge ideal of Kn,d. Write a recursive formula for βi,j(I(Kn,d)) in terms of the
Betti numbers of I(Km,d) for m < n. Use your formula to compute β1,j(I(Kn,d)) for all j.

Solution: The complement of Kn,d is a disjoint union of Kn and Kd, so the complement of Kn,d is
chordal, and thus I(Kn,d) has a linear resolution. So it suffices to find βi,i+2(I(Kn,d)).

In class we computed K1,d, so assume n > 1. Pick a vertex v in the partition of size n. Deleting
v leaves the graph Kn−1,d, which has at least one edge. So v is a splitting vertex. Therefore the
recursive formula is

βi,i+2(I(Kn,d)) = βi,i+2(I(K1,d)) + βi,i+2(I(Kn−1,d)) + βi−1,i+1(I(Kn−1,d)).
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To compute β1,3(I(Kn,d) we first compute β0,2(I(Kn,d)). For i = 0 we have

β0,2(I(Kn,d)) = β0,2(I(K1,d)) + β0,2(I(Kn−1,d)) + 0 = d + β0,2(I(Kn−1,d)).

As β0,2(I(K1,d)) = d, summing to solve the recurrence gives β0,2(I(Kn,d)) =
∑n

`=1 d = nd.
Now we turn to β1,3(I(Kn,d)). We have

β1,3(I(Kn,d)) =
(

d

2

)
+ β1,3(I(Kn−1,d)) + β0,2(Kn−1,d) =

(
d

2

)
+ β1,3(I(Kn−1,d)) + (n− 1)d.

Using β1,3(I(K1,d)) =
(
d
2

)
and solving the recurrence by summation gives

β1,3(I(Kn,d)) =
n−1∑
`=0

((
d

2

)
+ `d

)
= n

(
d

2

)
+ d

n−1∑
`=0

` = n

(
d

2

)
+ d

(
n

2

)
.

Since I(Kn,d) has a linear resolution, this determines β1,j(I(Kn,d)) for all j.


