
Math 314/814: Matrix Theory Dr. S. Cooper, Fall 2008

Homework Solutions – Week of October 28

Section 5.1:

(16) The columns of the given matrix A are easily seen to be orthonormal. Thus,

the matrix is orthogonal. By Theorem 5.5,

A−1 = AT =

[
0 1

1 0

]
.

(19) Let A be the given matrix. Then

AT A =


cos θ sin θ cos2 θ sin θ

− cos θ sin θ 0

− sin2 θ − cos θ sin θ cos θ




cos θ sin θ − cos θ − sin2 θ

cos2 θ sin θ − cos θ sin θ

sin θ 0 cos θ



=


1 0 0

0 1 0

0 0 1


To see this, you will need to use the trig identity sin2 θ + cos2 θ = 1. So, for

example,

cos2 θ sin2 θ + cos4 θ + sin2 θ = cos2 θ(sin2 θ + cos2 θ) + sin2 θ

= cos2 θ + sin2 θ = 1

− cos θ sin3 θ − cos3 θ sin θ + cos θ sin θ = cos θ sin θ(− sin2 θ − cos2 θ + 1) = 0

We see that A−1 = AT . So, by Theorem 5.5 A is orthogonal and

A−1 = AT =


cos θ sin θ cos2 θ sin θ

− cos θ sin θ 0

− sin2 θ − cos θ sin θ cos θ

 .
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(20) The columns of the given matrix A are easily seen to be orthonormal. Thus,

the matrix is orthogonal. By Theorem 5.5,

A−1 = AT =


1/2 1/2 −1/2 1/2

−1/2 1/2 1/2 1/2

1/2 1/2 1/2 −1/2

1/2 −1/2 1/2 1/2

 .

(26) Suppose Q is an orthogonal matrix. Let P be a matrix obtained from Q by

interchanging rows of Q.

Since Q is orthogonal, the row vectors of Q form an orthonormal set (see Theo-

rem 5.7). Since changing the order of a list of vectors doesn’t change the length

of the vectors nor the orthogonality of the set, the row vectors of P form an

orthonormal set. Thus, the column vectors of P T form an orthonormal set. We

conclude, using the definition of orthogonal matrices, that P T is an orthogonal

matrix. Applying Theorem 5.5 to P T yields that

(P T )−1 = (P T )T = P.

Therefore,

P−1 = [(P T )−1]−1 = P T .

Now applying Theorem 5.5 to P shows that P is an orthogonal matrix.

Section 5.2:

(1) Observe that

W =

{[
x

2x

]
∈ R2

}
= span

([
1

2

])
.

That is W equals the column space of the 2× 1 matrix

A =

[
1

2

]
.

By Theorem 5.10, W⊥ = null(AT ). We have

AT =
[

1 2
]
.
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After we solve the system ATx = 0, we see that

W⊥ = null(AT ) =

{
x =

[
−2t

t

]
: t ∈ R

}

=

{[
x

y

]
: x + 2y = 0

}

Thus, a basis for W⊥ is

B⊥ =

{[
−2

1

]}
.

(2) Observe that

W =

{[
x

(−3/4)x

]
∈ R2

}
= span

([
1

−3/4

])
.

That is W equals the column space of the 2× 1 matrix

A =

[
1

−3/4

]
.

By Theorem 5.10, W⊥ = null(AT ). We have

AT =
[

1 −3/4
]
.

After we solve the system ATx = 0, we see that

W⊥ = null(AT ) =

{
x =

[
(3/4)t

t

]
: t ∈ R

}

=

{[
x

y

]
: x− (3/4)y = 0

}

Thus, a basis for W⊥ is

B⊥ =

{[
3/4

1

]}
.
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(3) Observe that

W =




x

y

x + y

 ∈ R3

 = span




1

0

1

 ,


0

1

1


 .

That is W equals the column space of the 3× 2 matrix

A =


1 0

0 1

1 1

 .

By Theorem 5.10, W⊥ = null(AT ). We have

AT =

[
1 0 1

0 1 1

]
.

After we solve the system ATx = 0, we see that

W⊥ = null(AT ) =

x =


−t

−t

t

 : t ∈ R


=




x

y

z

 : x = t, y = t, z = −t


Thus, a basis for W⊥ is

B⊥ =




1

1

−1


 .

(6) Observe that

W =




2t

2t

−t

 ∈ R3

 = span




2

2

−1


 .
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That is W equals the column space of the 3× 1 matrix

A =


2

2

−1

 .

By Theorem 5.10, W⊥ = null(AT ). We have

AT =
[

2 2 −1
]
.

After we solve the system ATx = 0, we see that

W⊥ = null(AT ) =

x =


−s + (t/2)

s

t

 : s, t ∈ R


=




x

y

z

 : x = −s + (t/2), y = s, z = t


Thus, a basis for W⊥ is

B⊥ =



−1

1

0

 ,


1/2

0

1


 .

(7) We begin by finding RREF(A):

A −→ RREF (A) =


1 0 1

0 1 −2

0 0 0

0 0 0


We see that a basis for row(A) is{[

1 0 1
]
,
[

0 1 −2
]}

.
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By solving the system Ax = 0, we find that x1 = −x3 = −t, x2 = 2x3 = 2t, x3 =

t. So, a basis for null(A) is 

−1

2

1


 .

Note that

1(−1) + (0)(2) + (1)(1) = 0

(0)(−1) + (1)(2) + (−2)(1) = 0

That is, the basis vectors for row(A) are orthogonal to the basis vectors for

null(A). This is enough to show that every vector in row(A) is orthogonal to

every vector in null(A).

(9) Using the RREF(A) from exercise 7, we see that a basis for col(A) is


1

5

0

−1

 ,


−1

2

1

−1




.

To find a basis for null(AT ), we need to row-reduce AT :

AT =


1 5 0 −1

−1 2 1 −1

3 1 −2 1

 −→


1 5 0 −1

0 7 1 −2

0 0 0 0

 .

By solving ATx = 0, we find x1 = 5/7t−3/7s, x2 = −t/7+2/7s, x3 = t, x4 = s.

So, a basis for null(AT ) is 


5

−1

7

0

 ,


−3

2

0

7




.
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Note that

(1)(5) + (5)(−1) + (0)(7) + (−1)(0) = 0

(−1)(5) + (2)(−1) + (1)(7) + (−1)(0) = 0

(1)(−3) + (5)(2) + (0)(0) + (−1)(7) = 0

(−1)(−3) + (2)(2) + (1)(0) + (−1)(7) = 0

That is, the basis vectors for col(A) are orthogonal to the basis vectors for

null(AT ). This is enough to show that every vector in col(A) is orthogonal to

every vector in null(AT ).

(11) We have that

W = span




2

1

−2

 ,


4

0

1


 = col(A)

where

A =


2 4

1 0

−2 1

 .

So, by Theorem 5.10, W⊥ = null(AT ). We have

AT =

[
2 1 −2

4 0 1

]
−→

[
2 1 −2

0 2 −5

]
.

Thus, when we solve the system ATx = 0, we have x1 = −1/4t, x2 = 5/2t, x3 =

t. So, a basis for W⊥ = null(AT ) is


1

−10

−4


 .

(12) We have that

W = span




1

−1

3

−2

 ,


0

1

−2

1



 = col(A)
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where

A =


1 0

−1 1

3 −2

−2 1

 .

So, by Theorem 5.10, W⊥ = null(AT ). We have

AT =

[
1 −1 3 −2

0 1 −2 1

]
.

Thus, when we solve the system ATx = 0, we have x1 = x2 − 3x3 + 2x4 =

−s + t, x2 = 2x3 − x4 = 2s− t, x3 = s, x4 = t. So, a basis for W⊥ = null(AT ) is


−1

2

1

0

 ,


1

−1

0

1




.

(16) By definition,

projW (v) =

(
u1 · v
u1 · u1

)
u1 +

(
u2 · v
u2 · u2

)
u2.

We calculate

u1 · v = 2

u2 · v = 2

u1 · u1 = 3

u2 · u2 = 2

Thus,

projW (v) =
2

3
u1 +

2

2
u2 =


5/3

−1/3

2/3

 .
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(17) By definition,

projW (v) =

(
u1 · v
u1 · u1

)
u1 +

(
u2 · v
u2 · u2

)
u2.

We calculate

u1 · v = 1

u2 · v = 13

u1 · u1 = 9

u2 · u2 = 18

Thus,

projW (v) =
1

9
u1 +

13

18
u2 =


−1/2

1/2

3

 .

(21) Let u1 =


1

2

1

 and u2 =


1

−1

1

. Then W = span(u1,u2). We want to write

v as

v = w + w⊥,

where w ∈ W and w⊥ ∈ W⊥. Using the proof of Theorem 5.11, we see that

w = projW (v) =

(
u1 · v
u1 · u1

)
u1 +

(
u2 · v
u2 · u2

)
u2.

We calculate

u1 · v = 3

u2 · v = 9

u1 · u1 = 6

u2 · u2 = 3

Thus,

w = projW (v) =
1

2
u1 + 3u2 =


7/2

−2

7/2

 .
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We now let

w⊥ = v −w =


1/2

0

−1/2

 .

So, the orthogonal decomposition of v with respect to W is

v = w + w⊥ =


7/2

−2

7/2

+


1/2

0

−1/2

 .

(25) No, it is not necessarily true that w′ is in W⊥. For example, consider the

subspace W of R3 from exercise 21. That is, let

W = span




1

2

1

 ,


1

−1

1


 .

Take

v =


1

2

1

 ∈ R3.

We observe that since W is a subspace, the vector

w :=


0

0

0


is in W . Moreover, we can write

v = 0 + v.

Here the vector v is also playing the role of w′. However,
1

2

1

 ·


1

2

1

 = 6 6= 0.

This shows that w′ is not in W⊥.
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(29) To do this exercise, it is helpful to use a part of exercise (27); namely, if u ∈ W ,

then projW (u) = u. Let’s see why this is true.

By Theorem 5.11 and its proof, we can write

u = w + w⊥ = projW (u) + w⊥,

where w = projW (u) ∈ W and w⊥ ∈ W⊥ and these vectors are unique. But

0 ∈ W⊥ and u ∈ W and

u = u + 0.

Since the vectors w and w⊥ are unique, we must have that w = projW (u) = u

and w⊥ = 0. This shows that projW (u) = u.

Now let x be a vector in Rn. Then, by definition, projW (x) is a linear combina-

tion of vectors in W and so projW (x) is a vector in W (since W is a subspace

and thus closed under scalar multiplication and vector addition!). But the pro-

jection of any vector in W is just itself by the above observations. Therefore,

we conlcude that

projW (projW (x)) = projW (x).

Section 5.3:

(1) Let v1 = x1 =

[
1

1

]
. Then let

v2 = x2 −
(

v1 · x2

v1 · v1

)
v1

=

[
1

2

]
− 3

2

[
1

1

]

=

[
−1/2

1/2

]
The set {v1,v2} is an orthogonal basis for R2.

To obtain an orthonormal basis for R2 we normalize the vectors v1 and v2. We

find

||v1|| =
√

v1 · v1 =
√

2

||v2|| =
√

v2 · v2 = 1/
√

2
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Let

w1 =
1

||v1||
v1 =

[
1/
√

2

1/
√

2

]
and

w2 =
1

||v2||
v2

[
−
√

2/2
√

2/2

]
.

Then the set {w1,w2} is an orthonormal basis for R2.

(4) Let v1 = x1 =


1

1

1

. Then let

v2 = x2 −
(

v1 · x2

v1 · v1

)
v1

=


1

1

0

− 2

3


1

1

1



=


1/3

1/3

−2/3


and

v3 = x3 −
(

v1 · x3

v1 · v1

)
v1 −

(
v2 · x3

v2 · v2

)
v2

=


1

0

0

− 1

3


1

1

1

− 1/3

2/3


1/3

1/3

−2/3



=


1/2

−1/2

0


The set {v1,v2,v3} is an orthogonal basis for R3.
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To obtain an orthonormal basis for R3 we normalize the vectors v1,v2 and v3.

We find

||v1|| =
√

v1 · v1 =
√

3

||v2|| =
√

v2 · v2 =
√

6/3

||v3|| =
√

v3 · v3 =
√

2/2

Let

w1 =
1

||v1||
v1 =


1/
√

3

1/
√

3

1/
√

3


and

w2 =
1

||v2||
v2


1/
√

6

1/
√

6

−2/
√

6


and

w3 =
1

||v3||
v3


1/
√

2

−1/
√

2

0


Then the set {w1,w2,w3} is an orthonormal basis for R3.

(5) Let v1 = x1 =


1

1

0

. Then let

v2 = x2 −
(

v1 · x2

v1 · v1

)
v1

=


3

4

2

− 7

2


1

1

0



=


−1/2

1/2

2


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Then the set {v1,v2} is an orthogonal basis for W .

(6) Let v1 = x1 =


2

−1

1

2

. Then let

v2 = x2 −
(

v1 · x2

v1 · v1

)
v1

=


3

−1

0

4

−
15

10


2

−1

1

2



=


0

1/2

−3/2

1


Then the set {v1,v2} is an orthogonal basis for W .

(9) We first need to find a basis for col(A) by row-reducing A. We have

A =


0 1 1

1 0 1

1 1 0

 −→


1 1 0

0 1 1

0 0 1

 .

Thus, every original column of A is a basis vector for col(A). More precisely,

we let

x1 =


0

1

1

 , x2 =


1

0

1

 , x3 =


1

1

0

 .

Then B = {x1,x2,x3} is a basis for col(A).

We now apply the Gram-Schmidt process on the vectors in B to obtain an

orthogonal basis for col(A).
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Let v1 = x1 =


0

1

1

. Then let

v2 = x2 −
(

v1 · x2

v1 · v1

)
v1

=


1

0

1

− 1

2


0

1

1



=


1

−1/2

1/2


and

v3 = x3 −
(

v1 · x3

v1 · v1

)
v1 −

(
v2 · x3

v2 · v2

)
v2

=


1

1

0

− 1

2


0

1

1

− 1/2

3/2


1

−1/2

1/2



=


2/3

2/3

−2/3


The set {v1,v2,v3} is an orthogonal basis for col(A).
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