Math 314/814: Matrix Theory Dr. S. Cooper, Fall 2008
Homework Solutions — Week of November 4

Section 5.3:

(7) In the last homework set (Week of October 28), we found that W has the orthogonal

basis
1 —1/2
B=<{vi=|1],va= 1/2
0 2

We use B to find the orthogonal decomposition of v. We calculate

projw(v) = (‘:’11:1) vy + <‘:’22‘:;> Vo
0 2
= §V1 + %Vz
4
= V2
-2/9
= 2/9
8/9
and
perpw (v) = v —projw(v)
38/9 |
= | -38/9
19/9

So, the orthogonal decomposition of v with respect to W is

—2/9 | 38/9
v = projw(v) + perpw(v) = | 2/9 | + | —38/9
8/9 | 19/9

(8) In the last homework set (Week of October 28), we found that W has the orthogonal

basis } ) ) )
2 0
-1 1/2
B=d{vi= V2 =
1 —3/2
2 1




We use B to find the orthogonal decomposition of v. We calculate

projw(v) = (:11:1) v+ <:22:2> Vo
2 4
BERTAERIVYZAL
= gV + =V2
. /5 ;
] 1335
| —53/35
| 54/35 |
and
perpw(v) = v —projw(v)
_ 3/5 -
| 1235
| 5335
| 16/35

So, the orthogonal decomposition of v with respect to W is

2/5 3/5
, 13/35 127/35
v = projw (v) + perpw (v) = +
—53/35 53/35
| 54/35 | | 16/35

(11) We start with a basis for R? which includes the given vector. Let

3 0 1190
X1=1|1|,Xx2=] 35 | ,X3= 0
S 0 0

it is easily verified that the matrix whose columns are x7,x2 and x3 row reduces to
the 3 x 3 identity matrix. Thus, by the Fundamental Theorem for Invertible Matrices,
B = {x1,%2,x3} is a basis for R3. We now apply GSOP to B to obtain an orthogonal

basis for R? which contains the given vector xj.



Let

Now let

Finally, let

V3

The set C = {v1,v2,Vvs}

Section 7.3:

3
vi=X1=| 1
5
V1 - X2
V2 = X2—< > 1
V1-Vi
~ oxp— 0y
I T
= X2—Vi
-3
= 34
-5
<V1-X3> (Vz'XS)
= Xg— vy — V2
Vi-Vy V2 V2
- _3570V B —3570v
- T35 P 1190 2
= x3— 102vq + 3vo
875
= 0
—525

is an orthogonal basis for R3 that contains the given vector.

(7) We need to find the least squares solution to the system

Let

a+b = 0
a+2b = 1
a+3b = 5
11
A=11 2
1 3



and

0
b=|1
5
We calculate
1 1 -
AT A = 1 2| =
1 2 3 6 14
1 3

Since det(AT A) = 6 # 0, the matrix AT A is invertible and the vector we seek equals
(AT A)=1ATb. Tt is easy to verify that

L1 14 -6

(ATA)
-6 3
So,
x = (ATA)t4Tp
0
1| 14 —6 1
= = 1
6 -6 3 123
5
B -3
5/2
So, the least squares approximating line is
5
y=-—-3+ 5T
The corresponding least squares error is:
0 —1/2 1/2
llel][ = b —Ax|[= ||| 1 | — 2 =1 =1 || =+3/2~1.225.
5 9/2 1/2

(8) We need to find the least squares solution to the system

at+b = 5
a+2b = 3
a+3b = 2



Let

11
A=1|1 2
1 3
and
5
b= 3
2
We calculate
1 1
T 1 1 1 3 6
AT A= 1 2| =
1 2 3 6 14
1 3

Since det(AT A) = 6 # 0, the matrix AT A is invertible and the vector we seek equals
(ATA)~1ATb. Tt is easy to verify that

14 -6
(AT4) = ¢
61 -6 3
So,
x = (ATA)tATp
5
1| 14 —6 1 1
= - 3
61 -6 3 123
2
B 19/6
-3/2
So, the least squares approximating line is
_19_3
Y=% 2"
The corresponding least squares error is:
5 -5/3 10/3 -
llell =[[b— A=l =[] 3 | = | 1/6 ||/ = ||| 17/6 ||| = v/1089/36 = <= =55.
2 —4/3 10/3



(11) We need to find the least squares solution to the system

a—5 = -1
a+0b = 1
a+5b = 2
a+106 = 4
Let _ _
1 -5
1 0
A=
1 5
1 10
and _ )
-1
1
b=
2
4
We calculate
_ L _
T 1 1 1 1 1 0 4 10
AT A= =
-5 0 5 10 1 5 10 150
1 10

Since det(AT A) = 500 # 0, the matrix AT A is invertible and the vector we seek equals
(ATA)~1ATb. It is easy to verify that

1| 150 -10

(ATA) L= —
500 | —10 4



So,

o]l
|

So, the least squares approximating line is

The corresponding least squares error is:

lef| = |[b — Ax|| =

(ATA)"'ATD
1 | 150 —10 111 1
500 1 —10 4 -5 0 5 10
7/10
8/25
_7.8
Y7105 "
(1] [ —9/10 ] [ —1/10
1 7/10 ||| 3/10
23/10 —3/10
4 39/10 | 1/10

(12) We need to find the least squares solution to the system

Let

and

a — 5b
a+0b
a+ 5b
a+ 10b

—_ = =

= /20/100 ~ 0.447.




We calculate

1 -5
AT A — 111 1 1 0 _ 4 10
-5 0 5 10 1 5 10 150
| 1 10 |

Since det(AT A) = 500 # 0, the matrix AT A is invertible and the vector we seek equals
(AT A)=1ATb. Tt is easy to verify that

1 | 150 —10
(ATA) =
500 | —10 4

So,

x = (ATA)"14Tp

o]
1 150 —10 111 1 3
5001 —10 4 -5 0 5 10 2
0
B 5/2
-1/5
So, the least squares approximating line is
5 1
=———_.
Y7275
The corresponding least squares error is:
3] [7/2] [ 172 ]
_ 3 5/2 1/2
llel| = [b — AX][ = - = =Vi=1
2 3/2 1/2
0 1/2 -1/2 |

(19) We calculate

3
3 1 1
AT A = 1
1
1



(20)

and

1
3 1 1
AT = 1| =
11 2 4
1
Thus, the normal equations AT AX = ATb are
11 6| 5
X =
6 6 4

Since det(ATA) = 1/30 # 0, the matrix AT A is invertible. So, the least squares

solution is

x = (ATA)14Tp
1 6 —6 5

30| —6 11 4

B 1/5
7/15
We calculate
3 =2
T 3 1 2 14 —6
-2 -2 1 —6 9
2 1
and
3 1 2 ! 6
-2 -2 1 ) -3

Thus, the normal equations AT AX = ATb are

14 -6 | _ 6
X =

-6 9 -3

Since det(ATA) = 1/90 # 0, the matrix AT A is invertible. So, the least squares



solution is

x = (ATA)"14Tb
1|9 6 6
N |6 14 -3
B 2/5
-1/15
(23) We calculate
11 0 1|[1 100] [3 0o 2 1]
10 -1 -1 1 01 1 0 3 -2 -1
ATA = -
01 1 1 0 -1 1 1 2 -2 3 2
01 1 0 1 =110 1 -1 2 2
and -~ o ~ -~ _
11 0 1 1 2
10 -1 —1 -3 -5
ATb = =
01 1 1 3
(01 1 o] | 4] |-1

Thus, we need to solve the normal equations AT AX = AT b:

(3 0 2 1] [ 9]

0 3 -2 —1|_ | =5
X =

2 _2 3 9 3

1 -1 2 2 1

To solve for the least squares solutions X we form the augmented matrix and row-

reduce:
(3 0 2 1] 2] (1 1 2 2 | -1
0 3 -2 -1 | -5 0 3 -4 -5 | 5
—
2 2 3 2| 3 0 0 1 2] -5
1 -1 2 2| -1 (0 0 0 0] o]

Since there are free variables, we see that there are infinitely many least squares

solutions. Solving we let 4 =t and so z3 = —2t — 5,20 = —t — 5 and 1 = t + 4.

10



Thus, the set of least squares solutions is:

4+1
—5—t
:teR
—5—2t
t
(25) Let
1 1 -1
0 -1 2
A=
3 2 -1
-1 0 1
and ) }
2
6
b=
11
L 0 -

1 1 -1
1 0 3 -1 11 7 =5
T 0 -1 2
At A= 1 -1 2 0 = 7 6 —5
3 2 -1
-1 2 -1 1 -5 -5 7
-1 0 1
and ) ~
2
1 0 3 -1 35
T 6
A'b = 1 -1 2 0 = 18
11
-1 2 -1 1 -1
0

Using Maple, we see that the matrix AT A is invertible. So, the least squares solution

11



18

X
|

(26) Let

and

2 1

ATA=13 1

and

Using Maple, we see that the matrix AT A is invertible. So, the least squares solution

(ATA)"1ATb

[ 17/44 —6/11 —5/44
—6/11 13/11  5/11
| —5/44  5/11 17/44
[ 42/11 |
19/11
| 42/11 |
[ 23 1]
11 1
A:
11 -1
02 1
o
7
b=
14
0

-1 0
1 2

—_
N = = W
[

12

35
18



18

X
|

(ATA)"1ATD

[ 35/66 —2/33 —5/11 | [ 35
= | —2/33  4/33 —1/11 | | 84
| —5/11 —1/11 9/11 | | 14

469/66
= 224/33
| —133/11

(29) We have the data points (20, 14.5), (40, 31), (48, 36), (60, 45.5), (80, 59), (100, 73.5). We

need to find the least squares solution to the system

a+200 = 14.5
a+40b = 31
a+48b = 36

a+60 = 455
a+80b = 59

a4+ 1006 = 735

Let
20

40
48
60
80
100

O UG G G 'y

and -~ _
14.5

31
36
45.5
99
73.5

13



We calculate

20
40
48 6 348
60 342 24304
80
100

11 1 1 1 1
20 40 48 60 80 100

AT A =

G (I G G G 'y

Since det(ATA) # 0, the matrix AT A is invertible and the vector we seek equals
(AT A)~tATb. We have

x = (ATA)14Tp

14.5 |
31

1519/1545 —29/2060 1 1 1 1 1 1 36

—29/2060 1/4120 20 40 48 60 80 100 45.5
59
73.5

0.9184466019417
0.729854368932

So, the least squares approximating line is

b=0.92+ 0.73h.

(32) (a) We need to solve the system

so + 0.5v9 +0.125g = 11
so+wvo+05g9g = 17

so+ 1.5y +1.125g = 21
so+2v9+29g = 23
so+3vg+4.5g = 18

14



Let

1 05 0125 |
1 1 05
A=|1 15 1125
1 2 2
1 3 45
and _ .
11
17
b= 21
23
18
We calculate
5 8 8.25
ATA=1] 8 165 1975

8.25 19.75 25.78125
Since det(AT A) # 0, the matrix AT A is invertible and the vector we seek equals
(AT A)~1ATb. We have (using Maple)
x = (ATA)'ATb
1.92

= 20.31
—9.94

So, the least squares approximating quadratic is
9.94
s(t) = 1.92 + 20.31t — TtQ.
50~ 1.92 m, vy ~ 20.31 m/s and g ~ —9.94 m/s?
The object will hit the ground when s = 0. We use Maple to factor s(t) as

s(t) = —4.97(t + 0.09244349461) (t — 4.178962609).

Since ¢t cannot be negative, we conclude that the object hits the ground at ap-

proximately t = 4.12 s.
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Section 6.1:

(1)

The set V = :x € R 3 is a vector space. Axioms 2, 3, 7, 8, 9, and 10 all hold

x
on the larger vector space R?, and so V inherits these properties. We verify axioms

1,4, 5 and 6:

Note that
a b a+b
+ = eV
a b a+b
showing axiom (1) holds.
We have
a 0 a
+ =
a 0 a
and
0
eV
0
which verifies axiom (4).
We have
a —a 0
+ =
a —a 0
and
—a
eV
—a
which verifies axiom (5).
Note that for any scalar ¢
a ca
c = eV
a ca

showing axiom (6) holds.

T

V = €R?:2 >0,y >0, with the usual vector addition and scalar multi-

Yy
plication is not a vector space. Axioms 5 and 6 do not hold. For example,

1
1

16



is in V, but the only vector for which u+ (—u) = 0 is

-1
-1
which is not in V.
Also, —3u is not in V.
x
V= € R?: zy > 0 p with the usual vector addition and scalar multiplication
Yy

is not a vector space. Axiom 1 does not hold. For example,

-1
u= eV
-1
and
0
v = eV
8
but
-1
utv= ZvV.

R? with the usual addition but the given scalar multiplication is not a vector space.

Axiom 8 does not hold. For example,

1 5 1 1 2 3 5
(2+3) = #2 +3 = + =
1 1 1 1 1 1 2
a b . .
The set V = :a,b,c € R} is a vector space. Axioms 2, 3, 7, 8, 9, and 10
0 c

all hold on the larger vector space R?, and so V inherits these properties. We verify

axioms 1, 4, 5 and 6:
Note that
ar b N az bo ai +az by + b

= eV
0 C1 0 (&) 0 c1 +C2

showing axiom (1) holds.

17



‘We have

a b 0 0 a b
+ =
c 0 &
and
0 0
eV
0
which verifies axiom (4).
We have
a b —a —b 0 0
+ =
c 0 —c 0 0
and
—a —b
eV
0 —c
which verifies axiom (5).
Note that for any scalar s
a b sa sb
s = eV
0 ¢ 0 sc

showing axiom (6) holds.

W is a subspace of V. To see this, let x and y be two vectors in W. Then x and y

are of the form

and

So,
a+b
x+y=| —(a+b) | €W
2(a+0b)

18



Also, let ¢ € R and x € W be as above. Then

ca
cX = —ca cW.

2ca
So, by Theorem 6.2, W is a subspace of R3.

W is not a subspace of R?. For example, note that

1
x=|1|eW
_3_
and _
2
y=1|12|e€eW
_5_
but
3
x+y=|3|¢gW
8

since 8 # 3+ 3+ 1.
W is a subspace of P,. To see this, let f and g be in W. Then
f = a+bx+ca?
g = o+p:c+qa:2
where a, b, ¢, 0,p, q are scalars such that a+b4+c=0and o+p+¢g=0. So
f+g=(a+0)+ (b+p)z+(c+q)z?

and
(a+0)+(b+p) +(c+qg =(a+b+c)+(0+p+q) =0+0=0.
This shows that f+ g e W.

Also, let m be a scalar and f € W as above. Then

mf = ma + mbx + mex?

19



where

ma + mb+mec =m(a+ b+ c) =m(0) =0.

We conclude that mf € W.

W is not a subspace of Py. To see this, note that
f=0+x+2?
and
g=1+0z+2?

are both in W. But,
fHg=14+z+222¢W

since 1(1)(2) =2 # 0.

Let a + bx + cz? € Py. We need to determine if there exist scalars ¢;, ¢2, c3 such that

a+br+cx? = c1(1+x) + o + 22) + c3(1 + 22).
This is true iff
a+bx+cx? = (c1 +c3) + (c1 + )7 + (c2 + c3)2”.

Comparing coefficients, we see that we must have

ci+c3 = a
cit+eca = b
c2+c3 = ¢

We form the associated augmented matrix and row-reduce:

101 | a 10 1| a
110 0b|—]01-1] b-a
01 1] ¢ 00 2| c—b+a

We see that the system is always consistent. Thus, yes the given polynomials span

Po.
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(62) Let a + bz + cx® € P2. We need to determine if there exist scalars ci, ca, c3 such that
a+bx+cx? = ci(1+z + 22%) + ca(2 + 2 + 22%) + c3(—1 + = + 227).
This is true iff
a+bx+cx? = (c14+2c2 —c3)+ (c1+ca+c3)r+ (2¢1 + 2c0 + QC3):):2.

Comparing coefficients, we see that we must have

cit+2c0—c3 = a
c1+c+cg = b
2c1 +2co+2c3 = ¢

We form the associated augmented matrix and start to row-reduce:

12 -11] a 12 -1 | a
11 1] b|—1]11 1| b
2. 2 2| ¢ 00 0 | c—2b

We see that the system is inconsistent. Thus, no the given polynomials do not span

Po.
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