
Math 314/814: Matrix Theory Dr. S. Cooper, Fall 2008

Homework Solutions – Week of November 4

Section 5.3:

(7) In the last homework set (Week of October 28), we found that W has the orthogonal

basis

B =

v1 =


1

1

0

 ,v2 =


−1/2

1/2

2


 .

We use B to find the orthogonal decomposition of v. We calculate

projW (v) =
(

v1 · v
v1 · v1

)
v1 +

(
v2 · v
v2 · v2

)
v2

=
0
2
v1 +

2
9/2

v2

=
4
9
v2

=


−2/9

2/9

8/9


and

perpW (v) = v − projW (v)

=


38/9

−38/9

19/9


So, the orthogonal decomposition of v with respect to W is

v = projW (v) + perpW (v) =


−2/9

2/9

8/9

 +


38/9

−38/9

19/9

 .

(8) In the last homework set (Week of October 28), we found that W has the orthogonal

basis

B =


v1 =


2

−1

1

2

 ,v2 =


0

1/2

−3/2

1




.
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We use B to find the orthogonal decomposition of v. We calculate

projW (v) =
(

v1 · v
v1 · v1

)
v1 +

(
v2 · v
v2 · v2

)
v2

=
2
10

v1 +
4

14/4
v2

=
1
5
v1 +

8
7
v2

=


2/5

13/35

−53/35

54/35


and

perpW (v) = v − projW (v)

=


3/5

127/35

53/35

16/35


So, the orthogonal decomposition of v with respect to W is

v = projW (v) + perpW (v) =


2/5

13/35

−53/35

54/35

 +


3/5

127/35

53/35

16/35

 .

(11) We start with a basis for R3 which includes the given vector. Let

x1 =


3

1

5

 ,x2 =


0

35

0

 ,x3 =


1190

0

0

 .

it is easily verified that the matrix whose columns are x1,x2 and x3 row reduces to

the 3×3 identity matrix. Thus, by the Fundamental Theorem for Invertible Matrices,

B = {x1,x2,x3} is a basis for R3. We now apply GSOP to B to obtain an orthogonal

basis for R3 which contains the given vector x1.
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Let

v1 = x1 =


3

1

5

 .

Now let

v2 = x2 −
(

v1 · x2

v1 · v1

)
v1

= x2 −
35
35

v1

= x2 − v1

=


−3

34

−5

 .

Finally, let

v3 = x3 −
(

v1 · x3

v1 · v1

)
v1 −

(
v2 · x3

v2 · v2

)
v2

= x3 −
3570
35

v1 −
−3570
1190

v2

= x3 − 102v1 + 3v2

=


875

0

−525

 .

The set C = {v1,v2,v3} is an orthogonal basis for R3 that contains the given vector.

Section 7.3:

(7) We need to find the least squares solution to the system

a + b = 0

a + 2b = 1

a + 3b = 5

Let

A =


1 1

1 2

1 3


3



and

b =


0

1

5

 .

We calculate

AT A =

 1 1 1

1 2 3




1 1

1 2

1 3

 =

 3 6

6 14

 .

Since det(AT A) = 6 6= 0, the matrix AT A is invertible and the vector we seek equals

(AT A)−1ATb. It is easy to verify that

(AT A)−1 =
1
6

 14 −6

−6 3

 .

So,

x = (AT A)−1ATb

=
1
6

 14 −6

−6 3

 1 1 1

1 2 3




0

1

5


=

 −3

5/2


So, the least squares approximating line is

y = −3 +
5
2
x.

The corresponding least squares error is:

||e|| = ||b−Ax|| =

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣


0

1

5

−

−1/2

2

9/2


∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣


1/2

−1

1/2


∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ =

√
3/2 ≈ 1.225.

(8) We need to find the least squares solution to the system

a + b = 5

a + 2b = 3

a + 3b = 2
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Let

A =


1 1

1 2

1 3


and

b =


5

3

2

 .

We calculate

AT A =

 1 1 1

1 2 3




1 1

1 2

1 3

 =

 3 6

6 14

 .

Since det(AT A) = 6 6= 0, the matrix AT A is invertible and the vector we seek equals

(AT A)−1ATb. It is easy to verify that

(AT A)−1 =
1
6

 14 −6

−6 3

 .

So,

x = (AT A)−1ATb

=
1
6

 14 −6

−6 3

 1 1 1

1 2 3




5

3

2


=

 19/6

−3/2


So, the least squares approximating line is

y =
19
6
− 3

2
x.

The corresponding least squares error is:

||e|| = ||b−Ax|| =

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣


5

3

2

−

−5/3

1/6

−4/3


∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣


10/3

17/6

10/3


∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ =

√
1089/36 =

33
6

= 5.5.
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(11) We need to find the least squares solution to the system

a− 5b = −1

a + 0b = 1

a + 5b = 2

a + 10b = 4

Let

A =


1 −5

1 0

1 5

1 10


and

b =


−1

1

2

4

 .

We calculate

AT A =

 1 1 1 1

−5 0 5 10




1 −5

1 0

1 5

1 10

 =

 4 10

10 150

 .

Since det(AT A) = 500 6= 0, the matrix AT A is invertible and the vector we seek equals

(AT A)−1ATb. It is easy to verify that

(AT A)−1 =
1

500

 150 −10

−10 4

 .
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So,

x = (AT A)−1ATb

=
1

500

 150 −10

−10 4

 1 1 1 1

−5 0 5 10



−1

1

2

4


=

 7/10

8/25


So, the least squares approximating line is

y =
7
10

+
8
25

x.

The corresponding least squares error is:

||e|| = ||b−Ax|| =

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣


−1

1

2

4

−

−9/10

7/10

23/10

39/10



∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣


−1/10

3/10

−3/10

1/10



∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣
=

√
20/100 ≈ 0.447.

(12) We need to find the least squares solution to the system

a− 5b = 3

a + 0b = 3

a + 5b = 2

a + 10b = 0

Let

A =


1 −5

1 0

1 5

1 10


and

b =


3

3

2

0

 .
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We calculate

AT A =

 1 1 1 1

−5 0 5 10




1 −5

1 0

1 5

1 10

 =

 4 10

10 150

 .

Since det(AT A) = 500 6= 0, the matrix AT A is invertible and the vector we seek equals

(AT A)−1ATb. It is easy to verify that

(AT A)−1 =
1

500

 150 −10

−10 4

 .

So,

x = (AT A)−1ATb

=
1

500

 150 −10

−10 4

 1 1 1 1

−5 0 5 10




3

3

2

0


=

 5/2

−1/5


So, the least squares approximating line is

y =
5
2
− 1

5
x.

The corresponding least squares error is:

||e|| = ||b−Ax|| =

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣


3

3

2

0

−


7/2

5/2

3/2

1/2



∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣


−1/2

1/2

1/2

−1/2



∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣
=
√

1 = 1.

(19) We calculate

AT A =

 3 1 1

1 1 2




3 1

1 1

1 2

 =

 11 6

6 6


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and

ATb =

 3 1 1

1 1 2




1

1

1

 =

 5

4

 .

Thus, the normal equations AT Ax = ATb are 11 6

6 6

x =

 5

4

 .

Since det(AT A) = 1/30 6= 0, the matrix AT A is invertible. So, the least squares

solution is

x = (AT A)−1ATb

=
1
30

 6 −6

−6 11

 5

4


=

 1/5

7/15


(20) We calculate

AT A =

 3 1 2

−2 −2 1




3 −2

1 −2

2 1

 =

 14 −6

−6 9


and

ATb =

 3 1 2

−2 −2 1




1

1

1

 =

 6

−3

 .

Thus, the normal equations AT Ax = ATb are 14 −6

−6 9

x =

 6

−3

 .

Since det(AT A) = 1/90 6= 0, the matrix AT A is invertible. So, the least squares
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solution is

x = (AT A)−1ATb

=
1
90

 9 6

6 14

 6

−3


=

 2/5

−1/15


(23) We calculate

AT A =


1 1 0 1

1 0 −1 −1

0 1 1 1

0 1 1 0




1 1 0 0

1 0 1 1

0 −1 1 1

1 −1 1 0

 =


3 0 2 1

0 3 −2 −1

2 −2 3 2

1 −1 2 2


and

ATb =


1 1 0 1

1 0 −1 −1

0 1 1 1

0 1 1 0




1

−3

2

4

 =


2

−5

3

−1

 .

Thus, we need to solve the normal equations AT Ax = ATb:
3 0 2 1

0 3 −2 −1

2 −2 3 2

1 −1 2 2

x =


2

−5

3

−1

 .

To solve for the least squares solutions x we form the augmented matrix and row-

reduce: 
3 0 2 1 | 2

0 3 −2 −1 | −5

2 −2 3 2 | 3

1 −1 2 2 | −1

 −→


1 −1 2 2 | −1

0 3 −4 −5 | 5

0 0 1 2 | −5

0 0 0 0 | 0

 .

Since there are free variables, we see that there are infinitely many least squares

solutions. Solving we let x4 = t and so x3 = −2t − 5, x2 = −t − 5 and x1 = t + 4.
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Thus, the set of least squares solutions is:


4 + t

−5− t

−5− 2t

t

 : t ∈ R


.

(25) Let

A =


1 1 −1

0 −1 2

3 2 −1

−1 0 1


and

b =


2

6

11

0

 .

Then the given system is equivalent to Ax = b. We calculate

AT A =


1 0 3 −1

1 −1 2 0

−1 2 −1 1




1 1 −1

0 −1 2

3 2 −1

−1 0 1

 =


11 7 −5

7 6 −5

−5 −5 7


and

ATb =


1 0 3 −1

1 −1 2 0

−1 2 −1 1




2

6

11

0

 =


35

18

−1

 .

Using Maple, we see that the matrix AT A is invertible. So, the least squares solution
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is

x = (AT A)−1ATb

=


17/44 −6/11 −5/44

−6/11 13/11 5/11

−5/44 5/11 17/44




35

18

−1



=


42/11

19/11

42/11


(26) Let

A =


2 3 1

1 1 1

−1 1 −1

0 2 1


and

b =


21

7

14

0

 .

Then the given system is equivalent to Ax = b. We calculate

AT A =


2 1 −1 0

3 1 1 2

1 1 −1 1




2 3 1

1 1 1

−1 1 −1

0 2 1

 =


6 6 4

6 15 5

4 5 4


and

ATb =


2 1 −1 0

3 1 1 2

1 1 −1 1




21

7

14

0

 =


35

84

14

 .

Using Maple, we see that the matrix AT A is invertible. So, the least squares solution

12



is

x = (AT A)−1ATb

=


35/66 −2/33 −5/11

−2/33 4/33 −1/11

−5/11 −1/11 9/11




35

84

14



=


469/66

224/33

−133/11


(29) We have the data points (20, 14.5), (40, 31), (48, 36), (60, 45.5), (80, 59), (100, 73.5). We

need to find the least squares solution to the system

a + 20b = 14.5

a + 40b = 31

a + 48b = 36

a + 60 = 45.5

a + 80b = 59

a + 100b = 73.5

Let

A =



1 20

1 40

1 48

1 60

1 80

1 100


and

b =



14.5

31

36

45.5

59

73.5


.
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We calculate

AT A =

 1 1 1 1 1 1

20 40 48 60 80 100





1 20

1 40

1 48

1 60

1 80

1 100


=

 6 348

342 24304

 .

Since det(AT A) 6= 0, the matrix AT A is invertible and the vector we seek equals

(AT A)−1ATb. We have

x = (AT A)−1ATb

=

 1519/1545 −29/2060

−29/2060 1/4120

 1 1 1 1 1 1

20 40 48 60 80 100





14.5

31

36

45.5

59

73.5


=

 0.9184466019417

0.729854368932


So, the least squares approximating line is

b = 0.92 + 0.73h.

(32) (a) We need to solve the system

s0 + 0.5v0 + 0.125g = 11

s0 + v0 + 0.5g = 17

s0 + 1.5v0 + 1.125g = 21

s0 + 2v0 + 2g = 23

s0 + 3v0 + 4.5g = 18

14



Let

A =



1 0.5 0.125

1 1 0.5

1 1.5 1.125

1 2 2

1 3 4.5


and

b =



11

17

21

23

18


.

We calculate

AT A =


5 8 8.25

8 16.5 19.75

8.25 19.75 25.78125

 .

Since det(AT A) 6= 0, the matrix AT A is invertible and the vector we seek equals

(AT A)−1ATb. We have (using Maple)

x = (AT A)−1ATb

=


1.92

20.31

−9.94


So, the least squares approximating quadratic is

s(t) = 1.92 + 20.31t− 9.94
2

t2.

(b) s0 ≈ 1.92 m, v0 ≈ 20.31 m/s and g ≈ −9.94 m/s2

(c) The object will hit the ground when s = 0. We use Maple to factor s(t) as

s(t) = −4.97(t + 0.09244349461)(t− 4.178962609).

Since t cannot be negative, we conclude that the object hits the ground at ap-

proximately t = 4.12 s.
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Section 6.1:

(1) The set V =


 x

x

 : x ∈ R

 is a vector space. Axioms 2, 3, 7, 8, 9, and 10 all hold

on the larger vector space R2, and so V inherits these properties. We verify axioms

1, 4, 5 and 6:

Note that  a

a

 +

 b

b

 =

 a + b

a + b

 ∈ V

showing axiom (1) holds.

We have  a

a

 +

 0

0

 =

 a

a


and  0

0

 ∈ V

which verifies axiom (4).

We have  a

a

 +

 −a

−a

 =

 0

0


and  −a

−a

 ∈ V

which verifies axiom (5).

Note that for any scalar c

c

 a

a

 =

 ca

ca

 ∈ V

showing axiom (6) holds.

(2) V =


 x

y

 ∈ R2 : x ≥ 0, y ≥ 0

 with the usual vector addition and scalar multi-

plication is not a vector space. Axioms 5 and 6 do not hold. For example,

u =

 1

1


16



is in V , but the only vector for which u + (−u) = 0 is −1

−1


which is not in V .

Also, −3u is not in V .

(3) V =


 x

y

 ∈ R2 : xy ≥ 0

 with the usual vector addition and scalar multiplication

is not a vector space. Axiom 1 does not hold. For example,

u =

 −1

−1

 ∈ V

and

v =

 0

8

 ∈ V

but

u + v =

 −1

7

 6∈ V.

(5) R2 with the usual addition but the given scalar multiplication is not a vector space.

Axiom 8 does not hold. For example,

(2 + 3)

 1

1

 =

 5

1

 6= 2

 1

1

 + 3

 1

1

 =

 2

1

 +

 3

1

 =

 5

2

 .

(9) The set V =


 a b

0 c

 : a, b, c ∈ R

 is a vector space. Axioms 2, 3, 7, 8, 9, and 10

all hold on the larger vector space R2, and so V inherits these properties. We verify

axioms 1, 4, 5 and 6:

Note that  a1 b1

0 c1

 +

 a2 b2

0 c2

 =

 a1 + a2 b1 + b2

0 c1 + c2

 ∈ V

showing axiom (1) holds.
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We have  a b

0 c

 +

 0 0

0 0

 =

 a b

0 c


and  0 0

0 0

 ∈ V

which verifies axiom (4).

We have  a b

0 c

 +

 −a −b

0 −c

 =

 0 0

0 0


and  −a −b

0 −c

 ∈ V

which verifies axiom (5).

Note that for any scalar s

s

 a b

0 c

 =

 sa sb

0 sc

 ∈ V

showing axiom (6) holds.

(25) W is a subspace of V . To see this, let x and y be two vectors in W . Then x and y

are of the form

x =


a

−a

2a


and

y =


b

−b

2b

 .

So,

x + y =


a + b

−(a + b)

2(a + b)

 ∈ W.
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Also, let c ∈ R and x ∈ W be as above. Then

cx =


ca

−ca

2ca

 ∈ W.

So, by Theorem 6.2, W is a subspace of R3.

(26) W is not a subspace of R3. For example, note that

x =


1

1

3

 ∈ W

and

y =


2

2

5

 ∈ W

but

x + y =


3

3

8

 6∈ W

since 8 6= 3 + 3 + 1.

(35) W is a subspace of P2. To see this, let f and g be in W . Then

f = a + bx + cx2

g = o + px + qx2

where a, b, c, o, p, q are scalars such that a + b + c = 0 and o + p + q = 0. So

f + g = (a + o) + (b + p)x + (c + q)x2

and

(a + o) + (b + p) + (c + q) = (a + b + c) + (o + p + q) = 0 + 0 = 0.

This shows that f + g ∈ W .

Also, let m be a scalar and f ∈ W as above. Then

mf = ma + mbx + mcx2
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where

ma + mb + mc = m(a + b + c) = m(0) = 0.

We conclude that mf ∈ W .

(36) W is not a subspace of P2. To see this, note that

f = 0 + x + x2

and

g = 1 + 0x + x2

are both in W . But,

f + g = 1 + x + 2x2 6∈ W

since 1(1)(2) = 2 6= 0.

(61) Let a + bx + cx2 ∈ P2. We need to determine if there exist scalars c1, c2, c3 such that

a + bx + cx2 = c1(1 + x) + c2(x + x2) + c3(1 + x2).

This is true iff

a + bx + cx2 = (c1 + c3) + (c1 + c2)x + (c2 + c3)x2.

Comparing coefficients, we see that we must have

c1 + c3 = a

c1 + c2 = b

c2 + c3 = c

We form the associated augmented matrix and row-reduce:
1 0 1 | a

1 1 0 | b

0 1 1 | c

 −→


1 0 1 | a

0 1 −1 | b− a

0 0 2 | c− b + a

 .

We see that the system is always consistent. Thus, yes the given polynomials span

P2.
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(62) Let a + bx + cx2 ∈ P2. We need to determine if there exist scalars c1, c2, c3 such that

a + bx + cx2 = c1(1 + x + 2x2) + c2(2 + x + 2x2) + c3(−1 + x + 2x2).

This is true iff

a + bx + cx2 = (c1 + 2c2 − c3) + (c1 + c2 + c3)x + (2c1 + 2c2 + 2c3)x2.

Comparing coefficients, we see that we must have

c1 + 2c2 − c3 = a

c1 + c2 + c3 = b

2c1 + 2c2 + 2c3 = c

We form the associated augmented matrix and start to row-reduce:
1 2 −1 | a

1 1 1 | b

2 2 2 | c

 −→


1 2 −1 | a

1 1 1 | b

0 0 0 | c− 2b

 .

We see that the system is inconsistent. Thus, no the given polynomials do not span

P2.
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